
MicroLADDER V14
Software for PLC programming

User Manual

Date Modification
18/05/16 Start writing the original version
25/08/17 End of writing of the original version
16/10/17 Adding %SW91 to %SW94 (Wi-Fi DNS server)
05/12/17 Added precision for Linux installation

Add LogGetVariable function
The LogFindVariable function only works on mnemonics

04/01/18 Added additional information about the initial values of the variables
Adding library import information
Adding RF port setting information (LORA)
Added system code options "Optimize code size " and "RF "
Creation of Version 14 : new layout following SIREA’s graphic chart

1

MicroLADDER V14
Software for PLC programming

Table of contents

 1 INTRODUCTION AND INSTALLATION .. 7
 1.1 System requirements..7
 1.2 Compiler and system code...7
 1.3 MicroLADDER...7
 1.4 MicroDRIVER...7
 1.5 MicroHMI..7

 2 PROGRAMMING IN MicroLADDER .. 7
 2.1 Getting started...7

 2.1.1 Start and quit MicroLADDER..8
 2.1.2 Using the HMI..8
 2.1.1 The programming languages...14
 2.1.2 Importing firmware..15
 2.1.3 Connecting with the PLC..15
 2.1.4 Using pages...17
 2.1.5 Creating a page...18
 2.1.6 Call of a page...18
 2.1.7 Variable editor..19
 2.1.1 Variable editor tool bar...19
 2.1.2 Variable properties..21
 2.1.3 Type of variables..24
 2.1.1 Using variables in a program..26
 2.1.1 Variable multi-edition..26

 2.2 Objects available in Ladder..27
 2.3 Creation of a program..29

 2.3.1 First program in ladder...29
 2.3.2 First program in C..31
 2.3.1 Combining Ladder and C (including an example)..31
 2.3.2 Compilation and loading to the PLC...33

 2.4 Creation of a function...33
 2.4.1 Defining variables..34
 2.4.2 Use of a function..34

 2.4.2.1 Ladder..34
8.9.2.2 C code..35

 2.5 Using timer..35
 2.5.1 How to use a timer..36
 2.5.2 Examples of the use of timer..36

 2.6 Using a GUI (HMI)...37
 2.7 MicroHMI..37
 2.8 How to insert a GUI..37
 2.9 How to configure a GUI..37

 2.9.1 Example..38

2

MicroLADDER V14
Software for PLC programming

 3 SOFTWARE ENVIRONMENT .. 39
 3.1 System architecture..39

 3.1.1 Monitor software..39
 3.1.1.1 LED showing operational stat of the PLC..40
 3.1.1.2 Monitor mode...40
 3.1.1.3 Transferring the program from the SD card to the PLC memory.................40
 3.1.1.4 STOP mode...40
 3.1.1.5 RUN mode...40
 3.1.1.6 Incompatible versions between the monitor and the application...............40

 3.1.2 "MAIN.CFG" file...40
 3.1.3 Loadmain file...41
 3.1.4 Loading an application...41

 3.1.4.1 MicroCONTROL...42
 3.1.4.2 SD Card...42

 3.2 Type of data..43
 3.2.1 DIGITAL inputs...43
 3.2.2 ANALOG inputs...43
 3.2.3 DIGITAL outputs..43
 3.2.4 ANALOG outputs..43
 3.2.5 PWM outputs...43
 3.2.6 Boolean..44
 3.2.7 Integer..44
 3.2.8 Long..44
 3.2.9 Float..44
 3.2.10 String..44
 3.2.11 System bits...45
 3.2.12 System words...47
 3.2.13 Modbus Detail...55
 3.2.14 Radio Frequency details..57
 3.2.15 Edge management..57

 3.3 Importing the variables by overwriting the present variables...................57
 3.3.1 General...57
 3.3.2 Programming...58
 3.3.3 Input / Output..59
 3.3.4 Communication...59
 3.3.5 Logging..59
 3.3.6 Remote server..60
 3.3.7 Display..60

 3.4 Application implementation...61
 3.4.1 Fonction...61
 3.4.2 Fonction implementation...61
 3.4.3 Using a function...62
 3.4.4 Use in Ladder...62
 3.4.5 Using library...62

3

MicroLADDER V14
Software for PLC programming

 3.4.6 Calling a page..62
 3.4.7 Temporization..62
 3.4.8 Global variables...63
 3.4.9 Available RAM size...64

 3.5 Saved variables...64
 3.5.1 Saved RAM...64
 3.5.2 EEPROM or FRAM...65
 3.5.3 System words...65

 3.6 Watchdog..65
 3.6.1 Cycle Time Exceeded...65
 3.6.2 Watchdog soft...65

 3.7 System functions/Internal functions...65
 3.7.1 Configuration of the system code..65

 3.7.1.1 Optimize the code size..65
 3.7.1.2 AUTO_STOP...65

 3.7.2 DHCP..66
 3.7.3 DNS..66
 3.7.4 GFX...66
 3.7.5 HTTP...66
 3.7.6 LCD...66
 3.7.7 RF..66

 3.8 Communicating without protocol..66
 3.8.1 Setting..66

 3.8.1.1 ComSetCharTimeout (Parameter1, Parameter2)..66
 3.8.2 Transfer...67

 3.8.2.1 ComPush (parameter1, parameter2, parameter3)...67
 3.8.2.2 ComPushByte (parameter1, parameter2)...67
 3.8.2.3 ComSend (parameter1)..68
 3.8.2.4 ComFlushOutput (parameter1)...68

 3.8.3 Reception...69
 3.8.3.1 Return = ComGetFrameLength (parameter1)...69
 3.8.3.2 Return = ComGetFrame (parameter1)...69
 3.8.3.3 ComFlushInput (parameter1)..70

 3.8.4 Modbus..70
 3.8.4.1 Slave Modbus and slave Modbus TCP...70
 3.8.4.2 Master Modbus...70
 3.8.4.3 Return = ModbusRead (parameter1 to parameter7)....................................70
 3.8.4.4 Return = ModbusWrite (parameter1 to parameter8)....................................71
 3.8.4.5 Master TCP Modbus..71
 3.8.4.6 ComConnect (parameter1, parameter2, parameter3)..................................71
 3.8.4.7 ComClose (parameter1)...72
 3.8.4.8 Return = ComGetSockState(parameter1)..72

 3.9 Files management..72
 3.9.1 Structure of file names..72

4

MicroLADDER V14
Software for PLC programming

 3.10 Structure "FSFile "..73
 3.10.1 Return = FSOpen (parameter1, parameter2, parameter3).........................73
 3.10.2 FSClose (parameter1)..73
 3.10.3 Return = FSSeek (parameter1, parameter2)..73
 3.10.4 Return = FSDelete (parameter1)..74
 3.10.5 Return = FSWrite (parameter1, parameter2, parameter3)..........................74
 3.10.6 Return = FSRead (parameter1, parameter2, parameter3)..........................74
 3.10.7 Return = FSReadLine (parameter1, parameter2, parameter3, parameter4)

.. 74
 3.10.8 Return = FSWriteCSVRow (parameter1, parameter2, parameter3)...........75
 3.10.9 Return = FSReadCSVRow (parameter1 to parameter4)..............................75
 3.10.10 Return = FSMove (parameter1, parameter2)...76
 3.10.11 Return : FSCreateFolder (parameter1)...76
 3.10.12 Return: FSCopy (parameter1, parameter2)..76

 3.11 Log Management..76
 3.11.1 Time stamp format..76
 3.11.2 "Date" structure..77
 3.11.3 Return = dateToTime (parameter1)..77
 3.11.4 Return = timeToDate (parameter1)..77
 3.11.5 LogValue Format...78
 3.11.6 Return = LogAlQuery (parameter1, parameter2, parameter3)..................78
 3.11.7 Return = LogEvQuery (parameter1, parameter2, parameter3)..................78
 3.11.8 Return = LogTrQuery (parameter1 to parameter4).....................................79
 3.11.9 Return = LogFetch (parameter1)..79
 3.11.10 Return = LogAlSave (parameter1, parameter2, parameter3)...................79
 3.11.11 Return = LogEvSave (parameter1, parameter2, parameter3)..................80
 3.11.12 Return = LogTrSave (parameter1 to parameter4).....................................80
 3.11.13 Return = LogSave (parameter1)..80
 3.11.14 LogPurge ()...81
 3.11.15 LogEvPurge ()...81
 3.11.16 Return = LogTrPurge (parameter1)..81

 4 IO Bus ... 81
 4.1 Declaration of slave Equipment...81
 4.2 Declaration of variables..82
 4.3 State of communication with equipment...82

 5 HTTP Protocol ... 83
 6 Wi-Fi ... 83

 6.1 Mode...83
 6.2 WSockSetSSID (parameter 1)...84
 6.3 WSockSetSecKey (parameter 1)...84
 6.4 WSockSetSecType (parameter 1)...84
 6.5 WSockSetKey (parameter 1, parameter 2)...84

 7 Connection to a server ... 85
5

MicroLADDER V14
Software for PLC programming

 7.1 Setting...85
 7.2 Setting by programming..85

 8 History Management .. 86
8.1 Alarm..86
8.2 Event..87
8.3 Curve..87
8.4 Return = LogFindVariable (parameter1)..87
8.5 Return = LogGetVariable (parameter 1)..87

 9 Functions for character strings .. 88
 9.1 Return = StrToNum (parameter1)...88
 9.2 Sprintf (parameter1, parameter2, parameter 3)...88
 9.3 Upper (parameter1)..88
 9.4 Lower (parameter1)...88
 9.5 StrSet (parameter1, parameter2, parameter3)...89
 9.6 StrToLower (parameter1)..89
 9.7 StrToUpper (parameter1)..89
 9.8 Return = StrGetChar (parameter1, parameter2).......................................89
 9.9 Return = StrSetChar (parameter1, parameter2, parameter3)....................89

All Rights Reserved
No part of this document or any of its contents may be reproduced, copied, modified or
adapted, without the prior written consent of the author, unless otherwise indicated for
stand-alone materials.

6

MicroLADDER V14
Software for PLC programming

 1 INTRODUCTION AND INSTALLATION
This document provides a guide for the use of MicroLADDER V14 software and associated
software, for the programming of PLCs (Programmable Logic Controllers) of mArm7 fam-
ily. Specific features of each PLC are described within a separated document.

 1.1 System requirements
MicroLADDER can be installed either on Windows or Linux (Debian) operating systems.

 1.2 Compiler and system code
Both compiler and system code are present online and work automatically as soon as you
have an internet connection. They will transform your MicroLADDER file to make them
readable by your PLC. The version of the system code is automatically selected based on
the version of the MicroLADDER used. However, it is important to be careful that these
versions are compatible with the boot installed on the card.

 1.3 MicroLADDER
This software can be used to create the application, compiling it, doing dynamic
visualization and forcing variables.
For the installation of MicroLADDER on Windows, execute the file " setup-mladder-**",
where ** is the version number. For Linux, you can install it with the command "sudo dpkg
-i mladder-x.x.deb". If the installation doesn’t work by lack of dependency it is necessary
to execute the command "sudo apt-get -f install".

 1.4 MicroDRIVER
This software is used by MicroCONTROL and MicroLADDER for the communication with
the PLC. Version 5.3 or a more recent one needs to be installed. For the installation of
MicroDRIVER on Windows, execute the file "setup-mdriver-**.exe", where ** is the version
number. On Linux, execute the file "mdriver-**.deb", where ** is the version number. On
Linux as well, if the installation doesn’t work by lack of dependency it is necessary to
execute the command "sudo apt-get -f install".

 1.5 MicroHMI
This software is complementary to MicroLADDER and used to create HMI (Human-
Machine interface) for some PLCs that include a touchscreen (specifically, MicroARMA2,
MicroARMA8 and MicroARMA9). For the installation of MicroHMI on Windows, execute
the file "setup-mhmi-**.exe", where ** is the version number. On Linux, execute the file
"mhmi-**.deb", where ** is the version number. On Linux as well, if the installation doesn’t
work by lack of dependency it is necessary to execute the command "sudo apt-get -f
install".

 2 PROGRAMMING IN MicroLADDER

 2.1 Getting started

7

MicroLADDER V14
Software for PLC programming

 2.1.1 Start and quit MicroLADDER
After installation of the MicroLADDER software, the access to the program can be done
from the Start Menu on Windows operating systems or through the Dash on some Linux
operating systems, just searching for MicroLADDER in the Search Box. No shortcuts are
created on the Desktop by default. Once the program is open, the MicroLADDER main
window pops up.
To leave the program just go to the menu bar and do File>Quit. You will be asked to save
changes or to discard them before closing MicroLADDER. Temporary files are not saved in
MicroLADDER so make sure of saving them manually. You can also leave MicroLADDER by
clicking on the Close Button located in the upper right part of the main window on
Windows operating systems or upper left hand part of the main window on Linux
operating systems.

 2.1.2 Using the HMI
When opening the MicroLADDER, the main window of the software pops up (See Figure
1). The following elements can be found on the main window:
Title bar: on the title bar you can find the version of the MicroLADDER installed. In the
example of Figure 1, you can see “MicroLADDER v14.5”. It tells as well if you are using the
online (remote) or offline firmware version.
Tool bar: the toolbar includes the following items:
Page selection.
Add button.
Remove button.
Find button.
Find and replace button.
Connect.
Show variables.
Programming window: this window provides the user the space for programming
applications of functions. The user can move through this window by using the scroll bar
located on the right side.

Figure 1 : MicroLADDER main window

8

MicroLADDER V14
Software for PLC programming

 2.1.1.1 Tool bar
The tool bar in MicroLADDER appears at the top of the programming window. It includes
the following items, shown in Figure 2.

Figure 2 : Toolbar of MicroLADDER

The following items are included in the tool bar:
Page. Select the page to work with from the drop-down list.
Add. Click on this option to include a new item to the current ladder page. Select the item
desired from the drop-down menu and place it with the mouse cursor at the desired
position by a single left-click. You can also add items from the right-click menu or from the
Ladder menu located on the menu bar. When accessing through the right-click menu,
make sure you first place the mouse cursor at the desired location before right-clicking, as
the item will be placed directly with no need of an additional left-click.
Remove. This button is enabled only when having active an item selected in a ladder
page. Once the item(s) you want to delete selected, click on this option. You can also
delete the item(s) by selecting this option from the right-click menu or from the Ladder
menu located on the menu bar.
Find. Click on this option from a C code page to activate the research bar for code
searching. This bar will appear at the bottom of the window. See Figure 4. Write the text to
be found on the research bar and activate Match case for case-sensitive search and Wrap
around if you want all the matches in the page to be marked.

Figure 4: Bar appearing when clicking on “Find”.

Find and replace. Click on this option from a C code page and a pop up window will
appear. Specify the research criteria and the replacing text. You can either replace a text
manually match by match or replace it all. In the case of manual replacing, you can also do
it forwards or backwards, by activating or deactivating the option Search backwards.

Figure 5: Find and replace window

Connect. Before this step, you need to select the PLC you will use. To do this, go on the
title bar, click on Program, then Set program type and select your PLC. You can then click

9

MicroLADDER V14
Software for PLC programming

on the Connect button to connect to a PLC when disconnected or to disconnect it when
connected. When connecting, a new window will pop up (see figure 6). Define appropriate
settings for the Slave number, Channel and MicroDRIVER's address in order to connect to
your PLC. To disconnect, just click on this option while the connection with the PLC is
active. You can also access the Connection to MicroDRIVER window from the
Communication menu located on the menu bar.

Figure 6: Connection to MicroDRIVER window.

Show variables. Click on this option to open the variable editor window. This window
contains all the information regarding variables of the program, both system variables and
user variables. Use it also to check real time value of variables when communicating with
the PLC. You can also access this option from the Program menu located on the menu bar.

 2.1.1.2 Menu bar
The MicroLADDER menu bar contains a series of drop down menus that can be used to
access the various tools and configuration utilities of the software (See Figure 3)

The following drop menus are included in the menu bar:
File (Alt+F). Common functions are included in the file menu:
New (Ctrl+N). Create a new project. If you already have a project open you will be asked
to save or not changes.
Open (Ctrl+O). Open an already existing project. Just look for it in the explorer window
that will pop up when clicking.
Save (Ctrl+S). Save changes of the open project with the predefined name and location.
With new projects saved as first time, the Save As option will be open. A. .lad file will be
then saved at the specified location. An asterisk located at the title bar next to the
firmware version indicates if the last changes performed on the current project have
already been saved (without asterisk) or not (with asterisk).
Save As (Ctrl+A). Save changes of the project choosing the name and location.
Recent projects. The five most recent projects will be additionally shown in this menu, for
an easy access.
Quit (Ctrl+C). Exit MicroLADDER. If you have not saved changes manually, you will be

10

Figure 7. MicroLADDER menu bar.

MicroLADDER V14
Software for PLC programming

asked for it before leaving the program.

Program (Alt+P).
Compile. Compile a program or bloc function already created. After compilation you will
be asked to choose a location where to save it. To compile, the system code must be
imported first in the project or be available online.
Set program type. Select the program type to be developed, either a bloc function or a
specific PLC program. Be aware that the firmware has to be imported to see all options of
program types to be created. If the firmware is not imported, you will only have the Bloc
function type available.
Set custom icon. Associate an icon to a function. This icon will appear when imported in
the final program, inside the object. It is an asset only for the function block: it displays an
image on the block when it is imported in a project and called on a ladder page.
Devices. Gives the device list, splitted in two kinds :

- Main device : Create a list of settings that will allow to configure remounting data to
the server.

- Add remote device : Also called a slave. This option allows to set the slave(s) used to
create a Modbus network (see section 4 IoBus).
Show variables. Click on this option to open the variable editor window. This window
contains all the information regarding variables of the program, both system variables and
user variables. Use it also to check real time value of variables when communicating with
the PLC. You can also access this option by using the Show Variables button located on
the tool bar.
Note: Setup / Import / Export firmware are options only available when using integrated
firmware and not online firmware.
Setup firmware : Configure the options for compilation. Click on this option to change
the firmware settings into AUTO-STOP (by default), HTTP, LOG or SNMP.
Import firmware. Before creating a new program, the firmware has to be imported. Click
on this option and select the mArm.sys file on the explorer window. Once the firmware is
correctly imported, the different options for the program type will be available.
If you have an Internet connection, you don’t need to import the firmware as MicroLadder
will use online firmware.
Export firmware. Click on this option to export firmware currently imported in the project,
to be used in further projects. You may want to use this option to develop a new program
using the same firmware, or just to know the firmware version of a PLC.
Remove firmware. Click on this option to remove firmware previously imported.
Setup HMI. Configure the options for HMI.
Import HMI. Click on this option if you have created a HMI with MicroHMI that you want
to include in your current project.
Export HMI. Click on this option to export a HMI previously imported.
Remove HMI. Click on this option to remove a HMI previously imported.

Library (Alt+L).
Import function. Import a function to the current project by selecting it from the explorer
window that pops up when clicking this option.
Export function. Export a function to the current project by selecting it from the new

11

MicroLADDER V14
Software for PLC programming

window that pops up when clicking on this option.
Remove function. Remove a function from the current project by selecting it from the new
window that pops up when clicking on this option.

Pages (Alt+G).
Add Page. Add a new page to your current project. You may choose a Label (otherwise
the label will be automatically created by giving a number to the page), the programming
language of the new page (Ladder or C) and the options “Call on interrupt” and the use of
a Timer (in ms) can be considered as well.
Edit Page. Click on this option if you want to change the properties (label, language, call
on interrupt and timer) of a specific page already created.
Copy Page. Activate the page you want to copy and click on this option. Both properties
and code will be kept in this new page. The label will be automatically created by
assigning the next page number available to the new page.
Move Page. Activate the page you want to move and click on this option. Select in the
new window that pops up the new position desired for the active page.
Remove Page. Activate the page you want to remove and click on this option. Be aware
that this action will not be undoable.
Page 1 (and next). The different pages available in the project are directly accessible from
this menu.

Ladder (Alt+D)
This drop menu will not be accessible from a C page.
Select All (Ctrl+A). Click on this option to select all the elements included in an active
ladder page.
Invert selection (Ctrl+Shift+I). Click on this option if you want to invert the current
selection in the active ladder page. If no item is selected, all elements will be then
selected when clicking on this option.
Cut (Ctrl+X). Once selected the item(s) you want to cut, click on this option. Note that the
item(s) selected will not disappear nor change its appearance to show it is (they are) being
cut. It (They) will just disappear from its (their) previous position when pasting it (them). You
can also cut the item(s) by selecting this option from the right-click menu.
Copy (Ctrl+C). Once selected the item(s) you want to copy, click on this option. You can
also copy the item(s) by selecting this option from the right-click menu.
Paste (Ctrl+P). Position the mouse cursor where you want to paste the item(s) previously
cut or copied. You can also paste the item(s) by selecting this option from the right-click
menu.
Delete (Supr). Once selected the item(s) you want to delete, click on this option. You can
also delete the item(s) by selecting this option from the right-click menu or by using the
Remove button placed at the Tool bar, which is enabled when having a selection active.
Properties. Click on this option to assign the variable or code associated to the item
selected (only one item each time). Variable can be assigned both with the address and
the mnemonic. You can also access the item properties by selecting this option from the
right-click menu or by double-click on the item. Note that the double click only works if
MicroLadder is not connected to the PLC. If connected, the double-click allow to force
variable value.

12

MicroLADDER V14
Software for PLC programming

Add. Click on this option to include a new item to the current ladder page. Select the item
desired from the drop-down menu and place it with the mouse cursor at the desired
position by a single left-click. You can also add items from the right-click menu or by using
the Add button placed at the Tool bar. When accessing through the right-click menu,
make sure you first place the mouse cursor at the desired location before right-clicking, as
the item will be placed directly with no need of an additional left-click.

Code (Alt+O)
This drop menu will not be accessible from a ladder page.
Find (Ctrl+F). Click on this option from a C code page to activate the research bar for
code searching. This bar will appear at the bottom of the window. See Figure 4.
Write the text to be found on the research bar and activate Match case for case-sensitive
search and Wrap around if you want all the matches in the page to be marked.
Find and replace (Ctrl+R). Click on this option from a C code page and a pop up window
will appear. Specify the research criteria and the replacing text. You can either replace a
text manually match by match or replace all. In the case of manual replacing, you can also
do it forwards or backwards, by activating or deactivating the option Search backwards.

Communication (Alt+C)
Connect. This option will be available when no connection has yet been established. A
new window will pop up when clicking on this option. Define appropriate settings for the
Communication method, Slave number, Channel and MicroDRIVER's address in order to
connect to your PLC. You can also access the Connection to MicroDRIVER window by
using the Connect button placed at the Tool menu.

Disconnect. This option will be available when a previous connection has already been
established. Click on this option to stop communication with the PLC.
Read slave number : Only available when a connection with a PLC has been established.
Used to obtain the slave number of a specific slave, when it is planned to connect several
serial ones, on the same line.
Write slave number : Only available when one (and only one) connection with a PLC has
been established. Used to modify its slave number.
Start program : To start a program when the PLC is on a STOP state.
Stop program : To stop a program when the PLC is on a RUN state.
Reset device : To reset the PLC to its BOOT state. Useful to test its reactions when turned
on and off for example.
Reset variables : Does not leave the program, but put all the variables back to their initial
value. Useful to simulate a behaviour.
Flash program : Send a program to a PLC by connecting it. It stops the running program
to begins the one that has just been done. It is used for a loading by communication, but
it is faster to load using a SD card if your PLC have a SD card reader. See section "2.3.2
Compilation and loading to the PLC".

Note:
- It is possible to learn the corresponding key associated to shortcuts Alt+key for the

direct access to each drop menu on the menu bar by clicking on Alt while having the menu
13

MicroLADDER V14
Software for PLC programming

bar active or visible. Letters associated to each key will appear underlined.
- When using Unity in Ubuntu operating systems, some problems may be experienced

in the appearance of the menus. Menus that should appear blocked (Ladder drop menu
when programming in a C code page and Code drop menu when programming in a
ladder code page) can appear active. However, their functions are deactivated even if it
seems possible to click on them.

 2.1.1.3 Programming window
The programming window is the big blank space located under the tool bar used for the
development of programs. Two types of programming windows can be displayed: the
ladder window and the C window (see Figure 8).

Figure 8. MicroLADDER programming windows: ladder (left) and C (right).

 2.1.1 The programming languages

 2.1.1.1 Ladder
Ladder logic language (or just ladder language) is a programming language that
represents a program by a graphical diagram based on the circuit diagrams of relay-based
logic hardware. It is mainly used to develop software for PLCs used in control applications.
Ladder logic is widely used to program PLCs, where sequential control of a process or
manufacturing operation is required. Ladder logic is useful for simple but critical control
systems or for reworking old hard-wired relay circuits.
Ladder logic can be thought of as a rule-based language rather than a procedural
language. A "rung" in the ladder represents a rule. When implemented with relays and
other electromechanical devices, the various rules "execute" simultaneously and
immediately. When implemented in a programmable logic controller, the rules are typically
executed sequentially by software, in a continuous loop (scan). By executing the loop fast
enough, typically many times per second, the effect of simultaneous and immediate
execution is achieved, if considering intervals greater than the "scan time" required to
execute all the rungs of the program. Proper use of programmable controllers requires
understanding the limitations of the execution order of rungs.
While ladder diagrams were once the only available notation for recording programmable

14

MicroLADDER V14
Software for PLC programming

controller programs, today other forms are standardized in IEC 61131-3.

 2.1.1.2 C
The C programming language was originally developed by Dennis Ritchie between 1969
and 1973 at Bell Laboratories. C is very suitable for actually writing system level programs
because of the simplicity of expression, the compactness of the code and the wide range
of applicability. It allows the programmer a wide range of operations from high level down
to a very low level approaching the level of assembly language. The flexibility available is
wide what makes it a perfect programming language for the development of PLC
programs of high degree of complexity.
Users of MicroLADDER are expected to know basic concepts of this language. The point
of this user manual is to help the user to create PLC programs with MicroLADDER, so no
specific information is being provided regarding C language.

 2.1.2 Importing firmware
With this version of MicroLADDER, the firmware is online and works automatically with
your system. No import is needed, but an internet connection is.

 2.1.3 Connecting with the PLC
Establishing a connection with the PLC is necessary when loading a program through a
port and when monitoring variables.

 2.1.3.1 MicroDRIVER
MicroDRIVER is the software in charge of establishing connection between the PLC and
the different applications in the system. It can be considered as a “black box” of
communications. It is independent to the communication protocol of the system.
The user will not be aware of its operation as it runs in the background. However, if
MicroDRIVER is not installed, it would be impossible to establish connection with the PLC.

 2.1.3.2 Establishing connection
To establish connection from MicroLADDER with the PLC, you have to click on the
Connect option and establish connection through MicroDRIVER, as said before. Once
selected this option, a connection window pops up (see Figure 9).

For the connection with MicroDRIVER you have to determine the following items:
Communication method: select your option between:

15

Figure 9. Connection to mDriver window.

MicroLADDER V14
Software for PLC programming

- network host: connection is made by the network. Put the IP address or domain name
- serial port: choose a serial port in the list and its configuration
- channel: obsolete functionality

Slave number: this number identifies the PLC inside a network of PLCs. You do not need
to set the slave number if you are programming a single PLC. It will be determined after
the first connection.
MicroDRIVER's address: MicroDRIVER is the server application. It can run locally or on a
remote computer. If It runs in a remote computer you have to specify the IP address of this
computer.
The configuration for the connection to MicroDRIVER may differ depending of the way you
are connecting with the PLC from your computer. Most typical configuration parameters
can be seen in Table 1.

Table 1. Typical configuration parameters for connecting to MicroDRIVER.
Type of connection Configuration

PC – Ethernet - PLC Communication method Network host
IP address of PLC specified in the SD
card file main.cfg. Typically:
192.168.0.123

Slave number Typically 1. you don’t need to change
slave number when network host
connection.

MicroDRIVER's address Nothing

PC – Serial – PLC Communication method Serial port
Select your port number in the list.
Typical configuration is "38400
bauds", "8N1"

Slave number Slave number of PLC port specified in
the SD card file main.cfg.
Typically 1.
When having more than one PLC
connected in serial to the same
RS2485 port, the slave number must
be specified.

MicroDRIVER's address Nothing

PC – Ethernet – µFox
– Serial – PLC

Communication method Channel
Select channel number for µDriver
(default 1:COM1, 2,COM2, etc).
Typical configuration is "38400
bauds", "8N1"

Slave number See above

MicroDRIVER's address Address of the system communicating

16

MicroLADDER V14
Software for PLC programming

directly with the PLC. In the case of
using a MicroFOX, the MicroDRIVER
address is in this case the MicroFOX
address. Make sure of checking this IP
address.

Figure 10. Screen capture of the MicroLADDER main window with the PLC connected and
communicating.

Once the connection parameters correctly established, click on OK and the connection will
be established. You can make sure that the connection has been established checking the
following:

- The Connect button of the Tool bar is pressed. (If you click on it you directly
disconnect again).

- The Connect option of the Communication drop-down menu of the menu bar is
unable and the Disconnect option enabled.

- A green message “OK” has appeared on the tool bar.
- Active instructions of the program appears painted in green as well (See Figure 10).

Note:
A variable percentage is shown in green near the state of the connection. This is just
additional information which shows the quality of the connection with the PLC: it
represents the percentage of frames that have been correctly transmitted. The statistics
calculation is made when MicroDRIVER starts.

 2.1.4 Using pages
The number of pages able to be used in any MicroLADDER program is unlimited, being
each ladder page limited to 100 lines (there is no line limitation in C pages though). The

17

MicroLADDER V14
Software for PLC programming

limitation in the number of lines inside a ladder page forces the user to structure the
program in different pages and/or making use of functions, what facilitates the
interpretation of the code.

Page 1 is called at each PLC cycle. It must then call the other cyclic page. It is also possible
to call the pages on interruption (period of call set in %SW25 for a precise and fast period),
or on timer (settings in the property of the page for a slower and less precise period).

The user can decide if a specific page should be programmed either in ladder or in C.
Pages of different programming languages can be called and combined easily. This
provides the user a great flexibility and an easy structure interpretation when creating of
applications.
Make sure that there is no code already generated in a page when changing it from C to
ladder or vice-versa, as it will be lost.

 2.1.5 Creating a page
A new MicroLADDER project includes by default a single page, Page 1, which is by default
configured as ladder code. You can easily create an additional page by adding a new page
or by copying an existing page.
The number of pages to be used in a MicroLADDER project is unlimited, and pages can
interact between them by using the call command. This command is an object in ladder
code and a function in C code.

 2.1.6 Call of a page
Page 1 is called automatically whereas the other pages must be called on interruption,
timer, or with call orders in C or ladder.
A page can be called from another page inside a program, no matter the type of code
used in each page. That means a ladder page can be called from a C page and vice-versa.
For calling a page in ladder, just add a Call command either from the ladder drop-down
menu located on the menu bar or by the right-click menu.

Inserting a Call command with ladder.

If the called page does not have a label, it would be
called by its number. In this example, Page 2.

If the called page has a label, it can either be called
by its number or by its label, but in the ladder
diagram, the label will be shown. As it happens in
this example, where the page called its named
“Sequence2”.

In a page written in C language, another page can be also called either by its number, or
by a mnemonic.

18

MicroLADDER V14
Software for PLC programming

Inserting a Call command with C.
page_2(); //For calling page number 2
init() ; //For calling a page named “init”.

 2.1.7 Variable editor
Variables in MicroLADDER, as in ordinary computer programming, are storage locations
with an associated symbolic name which contains some known or unknown quantity of
information.

Variables available in a MicroLADDER program can be shown and edited from the variable
editor (see Figure 11). You can access the variable editor by clicking on Show variables.

 2.1.1 Variable editor tool bar
The variable editor tool bar appears at the top of the variable editor window. It includes
the following items, shown in Figure 12.

The following items are included in the variable editor tool bar:
User variables/System variables/User Tables created. Select the type of variables you
want to be shown from the drop-down list: system variables, user variables or one of the
tables that you may have created.
Add. Click on this option to include a new variable to the current MicroLADDER project.
Give this new variable a name (either an address or a label) and define its properties in the

19

Figure 12. Variable editor tool bar.

Figure 11 : Variable editor table

MicroLADDER V14
Software for PLC programming

new properties window that pops-up.
Remove from table. Remove a variable from a table, but not from the project.
Delete. Select a variable (or variables selecting them with Ctrl or Shift) and click on this
option to remove them. Variables could not be deleted when being used inside the
program.
Connect. Click on this option to connect to a PLC when disconnected or to disconnect it
when connected. When connecting, a new window will pop up when clicking on this
option. Define appropriate settings for the Communication method, the Slave number,
and MicroDRIVER's address in order to connect to your PLC. For disconnecting, just click
on this option while the connection with the PLC is active. You can also access the
Connection to MicroDRIVER Window from the Communication menu located on the
variable editor menu bar.
Find. Use this search bar for looking for a specific variable either by its address (as for
example, “%S1”) or by its label. The search is not case sensitive. Make sure you are in the
correct type of variable (if you are looking for a cycle control variable and you have the
user variables selected, the search will return no results).

 2.1.1.1 Variable editor tool bar
The Variable Editor has its own menu bar with a series of drop-down menus included (See
Figure 13).

These drop-down menus contain the following options:

Window
Close. You can close the Variable Editor by clicking on this option or just clicking on the
upper right close button (on Windows operating systems) or on the upper left close
button (on Linux operating systems).

Tables
Add table. In MicroLADDER, a category or group of variables is called table. By default
MicroLADDER considers two tables: user variables and system variables. New tables can
be defined by clicking on this option and giving a name.
Rename table. Click on this option to rename a Table. Default tables cannot be renamed.
Remove table. Click on this option to remove a Table. Default tables cannot be removed.
Import variable into table. Click on this option to import a CSV variable file to the current
MicroLADDER project.
Export table of variables. Click on this option to export a table of variables into a CSV file
from the current MicroLADDER project.
Import values into tables. Click on this option to import values into a table from the
current MicroLADDER project.
Export table values. Click on this option to export values into a table from the current
MicroLADDER project. It is only possible to export in a csv file.
System variables. A drop-down menu with the different system variable tables appears

20

Figure 13. Variable editor menu.

MicroLADDER V14
Software for PLC programming

when selecting this option. Variables included in each category selected will be shown in
the variable editor main window.
User variables. Variables created by the user will be shown in the variable editor main
window.
User tables. To sort the variables in the tables. Select the appropriate one in the list.

Variables
Add. Click on this option to include a new variable to the current MicroLADDER project.
You can also add a variable through the tool bar.
Select unused variables. Click on this option to select automatically all the variables that
are not used in the program. Gives a better visibility to delete them for example.
Properties: Click on this option to set-up the variables. Shortcut : double-clicking on a
variable from the list when not connected.
Set value. Some values can be forced manually when connecting with the PLC. Use this
option to set a variable to a specific value in real time. Shortcut : double-clicking on a
variable from the list when connected.
Add to table. Select one or more (with Ctrl or Shift) variables and add it into one of the
created tables.
Remove from table. Click on this option to remove one or more (with Ctrl or Shift)
variables from a table, but not from the project.
Delete. Select one or more (with Ctrl or Shift) variables and click on this option to delete
them. Variables could not be deleted when being used inside the program. You can also
delete them from the tool bar.
Cross references : Click on this option to show all the spots where a specific variable is
used.
Communication (Alt+C). This drop-down menu is similar to the Communication drop-
down menu of the MicroLADDER main menu bar.
Connect. This option will be available when no connection has yet been established. A
new window will pop up when clicking on this option. Define appropriate settings for the
Slave number, Channel and MicroDRIVER's address in order to connect to your PLC. You
can also access the Connection to MicroDRIVER Window by using the Connect button
placed at the Tool menu.
Disconnect. This option will be available when a previous connection has already been
established. Click on this option to stop communication with the PLC.
Read slave number. To know more about this option and the following ones, see 2.1.1.2
explaining the menu bar, see « Communications » tab.
Write slave number.
Start program.
Stop program.
Reset device.
Reset variables.
Flash program.

 2.1.2 Variable properties
The following information is shown about available variables in the variable editor:
General tab

21

MicroLADDER V14
Software for PLC programming

Type: Type of variable. For better understanding prefixes used for the address of variables,
see section 2.1.3.
Address: is the memory address of the variable in the PLC. For better understanding
prefixes used for the address of variables, see section 2.1.3.
Label: is the mnemonic given to the variable.
Comment: short explanation of the variable.
Value: current value of the variable.
Formated value: the value with its unity (v as volt for example) and the number of digits
after the desired coma on floating number (see “format” and “precision”).
Array size: in the case of having an array, number of items allocated in the array.
Otherwise, this information is empty.
String size: in the case of having a string, maximum number of characters allocated for the
string. Otherwise, this information is empty.

Programming tab
Init value: value loaded on the variable when starting the application or under initialization
request.
Saved: if the PLC has a saved memory, you can select this option and the value will be
kept during power interrupt. The user can determine the instant for the backup to
EEPROM or FRAM.
Timer (in ms): time period for the variable to be decreased from 1 to 0
Global: this property can be used with functions. It allows the variable keeping its value
between two calls.
Parameter: used for the declaration of function variables. See section on 2.4 Creation of a
function for further information. “Internal” is used for a main application variable.
Position: used to define order of input/output in a function.
Label: used to give a name to a variable when it appears in a function.

Input / Output tab
Configuration: parameter setting for the analog inputs
Bound variable: Only for input/output variable that correspond to connected elements.
Associates a user variable to a material variable.
Invert state: Only available when using a boolean bound variable. Allows to associate a
variable but reversing its value.
Scaling: Only available when using a no boolean bound variable.
It is possible to scale values, and to do so, specify a scale of raw value and associate it a
scale of scaled value.
For example : if 0-20000 (for 0-20mA) <=> -20°C-+80°C, set Min raw value=0, Max raw
value=20000, Min scaled value=-20, Max scaled value=80 and associate a bound variable
with type MF.
Min. raw value: minimum raw value for analog input
Max. raw value: maximum raw value for analog input
Min. scaled value : minimum scaled value for bound variable
Max. scaled value : maximum scaled value for bound variable

Communication tab
22

MicroLADDER V14
Software for PLC programming

See section 4.3 for Iobus communication stetting
Remote access:

None : no communication for this variable
Read only : Communication cycle is a periodic read frame. The variable in the PLC is a

copy of the variable in remote device.
Write only : Communication cycle is a periodic read frame. The variable in the remote

device is a copy of the variable in PLC.
Read / write : Communication cycle is a periodic read frame and a write frame when

necessary. Each time the variable change in PLC, the value is written into remote device.
Each time the variable change in the remote device, the value is updated into the PLC.
Remote address: Address of variable in remote device. The address must specify the
index of the remote device with ".index " syntaxe at the end. Example : "%MW2.3"
read/write holding register n°2 in remote device n°3.
Invert state: Only available when the remote address is a boolean type. Allows to
associate a variable but reversing its value.
Scaling: It is possible to scale values, and to do so, specify a scale of raw value and
associate it a scale of scaled value.
For example : if 0-100 in remote device <=> 0-10 in PLC, set Min raw value=0, Max raw
value=100, Min scaled value=0, Max scaled value=10. Thus, when value is 233 in remote
device, value is 23.3 in PLC and vice versa.
Min. raw value: minimum raw value in remote device
Max. raw value: maximum raw value in remote device
Min. scaled value : minimum scaled value in PLC
Max. scaled value : maximum scaled value in PLC

Logging tab
Alarm condition : set if the condition for the alarm will be inferior or superior to the
threshold.
Alarm threshold : define a condition with which an alarm will be turned ON. An alarm is a
state, and an event happens and is created every time that a threshold is passed.
Alarm apparition label : text that will appear when the alarm condition is present.
Alarm disparition label : text that will appear when the alarm condition disappears.
Event condition : set if the condition for the event will be inferior or superior to the
threshold.
Event threshold : define a condition with which an event will be turned ON.
Event label : text that will appear when the event condition is present.
Logging type : used to archive the value curves in time. There are two ways to do it :

- standard : takes a value with a regular interval
- averaged : takes an average of value in a given period of time

Logging delay (in seconds): the archive delay depends on the type of logging.
- standard : specified time, 1 min for example
- averaged : specified period of time

Logging threshold : threshold after which it will save a value.

Remote server tab
Access : to decide if the value must wind to the server. Three options:

23

MicroLADDER V14
Software for PLC programming

- private : value will not wind
- read only : value will wind
- read and write : value will wind and it is possible to modify it.

Label : only available when an “access” is set. Text that can be added to a name.

Display server tab
These parameters are used in GUI (MicroHMI), in the server (MicroServer) and in the
display of the formatted value in MicroLADDER when connected to the PLC. Different
options available below :

- Format : to set the format of the value displayed. "%v" means the value . Example :
"%v°C" will display value followed by unit "°C".

- Float precision: when having float variables, the number of digit after the decimal
point can be determined. -1 means no limit.

- Min. display value : minimum value to be displayed of a variable for synoptics,
gauges, etc. in MicroHMI.

- Max. display value : maximum value to be displayed of a variable for synotpics,
gauges, etc. in MicroHMI.

 2.1.3 Type of variables

Variables considered in a MicroLADDER program can be divided into two main tables:
system variables and user variables.

System variables
They are inherent to the PLC. Their properties cannot be modified, so the variable editor
will only show their real time value, but no modifications of their properties can be
performed.
These variables can be additionally classified into 9 tables:
System infos :%SW13,%SW14,%SW23,%SW24
Cycle control: %S0, %S1, %S16
Date&Time: %S5-%S8, %S24, %SW5-%SW12
Ethernet:%S25, %SW96-%SW137
Wi-Fi : %S26, %SW91-%SW95,%SW138-%SW175
Radio :%SW200-%SW211
I/O settings: %S11, %S12, %SW26-%SW32
Interrupt: %SW25
Serial ports: %SW34-%SW81
System infos: %SW13, %SW14
Variable setting: %S11, %S12, %SW26-%SW32
Watchdogs: %S15, %S20-%S22, %SW0-%SW2, %SW4

User variables
The user may need additional variables for a program created in MicroLADDER. If no
variables have been created by the user yet, no variables will be shown when selecting
User variables in the Variable Editor. Variables already created in the program (both
ladder or C pages) are created by the MicroLADDER software and thus they will be shown

24

MicroLADDER V14
Software for PLC programming

in the Variable Editor. However, a manual entry is needed for the declaration of arrays.
See next section on creation of variables to see how to manually create variables from the
Variable Editor.

Creating variables
Variables already entered in the program are automatically created by the MicroLADDER
software, but for the declaration of arrays a manual entry is needed.
For creating variables manually click on Add, give the variable a name and determine its
properties (see section 2.1.2) on the new window that pops-up (see Figure 14).

If the variable is declared alone, the properties of the variable have priority on the table
ones. It is then better to use %MW10[1] over %MW11 which will declare a variable and
thus properties that will have priority on the table ones.

Variable identification:
Variable is identify by a combination of type and address.
For example if type is boolean and address is 10. Variable is identified as %M10.

• Type : Select a type between :
- Boolean : variable going from 0 to 1
- Short : variable going from 0 to 65535

25

Figure 14.Variable properties window.

MicroLADDER V14
Software for PLC programming

- Long : variable going from about minus 2 billion to plus 2 billion
- Float : floating value that can be positive, negative and with coma
- String : of characters
- Binary input : input where there is current ON 0 or OFF 1
- Analog input :input where there is current with variable going from 0 to 65535
- Binary output : output that turns ON 0 or OFF 1
- Analog output : output that changes the state of an object (besides from ON or

OFF, like an acceleration for engine for example)
- System bit : for a data out of the system, with a numeric or boolean value.
- System word idem : for a data out of the system, with written value.

• Address :
Address is the variable offset in the PLC memory. Address must be unique for each
type. For example, it’s not allowed to set 2 variables %M0 but a variable %M0 and
an other %MW0 is allowed.
The definition of an address is not required. In that case a compilation will locate
the variable at a free space within the variable area of the same type. It is necessary
if a variable needs to go up to a server or if the PLC must be set to be a Modbus
slave, to make an other device come and read/write this variable.

It is possible to export variables in a CSV file or to import from a CSV file. During
these operations, a chat box allows to precise the structure of the CSV file.

 2.1.1 Using variables in a program
Variables can be referred to in MicroLADDER program both by calling them through
their address or label (=mnemonic). However, if they have a label, a ladder page will
always identify items included in a program with the mnemonic.

Variables can be exported to a CSV file and imported from a CSV file for their use in
further programs.

To export variables, go to Tables>Export table variables. A dialogue box allows to
specify the structure of the CSV file during the execution of these processes. It is
preferable not to change the default structure to avoid possible import problems. If you
change it when exporting, make sure that you respect the same order when importing
variables.

Variable import is performed by overwriting current variables, so make sure you do not
have in your current project a variable with the same address or mnemonic, as it will be
directly replaced.

 2.1.1 Variable multi-edition
It’s possible to edit properties of several variables together instead of editing each
variable separately.
- Select variables with Ctrl or Shift. Then go to properties from the toolbar

26

MicroLADDER V14
Software for PLC programming

Variables>Protperties or the right-click menu.
- Properties that have same value on all variables appear selected and framed in blue
while properties that have different value appear unselected and grey.
- Select properties you want to change and set the new value. All properties selected
will be applied to all variables. Properties not selected will keep unchanged.
- Validate with OK.
Warning : don’t change properties that must be unique (label, couple type/address)

 2.2 Objects available in Ladder
Basic elements or items available in MicroLADDER for the creation of programs are shown
in Table 6. As a program written in ladder can be written as well in C, equivalence between
ladder items are additionally shown in this table.

27

Figure 15. Multiple edition.

MicroLADDER V14
Software for PLC programming

Table 6. Typical items available in ladder language.
Item: symbol
and name

Description

Open contact

It is activated when the value of the variable represented (input, internal
variable or system bit) is 1. It is deactivated when its the value is 0.
It can be used either with a binary variable, or as a comparison of the type
%MW0>0 with integer, long or float variables. That means every value of
the variable different to 0 will activate the contact.

Closed
contact

It is activated when the value of the variable represented (input, internal
variable or system bit) is 0. It is deactivated when its the value is 1.
Same remarks as those already done for open contact can be done.

Rising edge

It is activated when there is a change in the value of the variable
represented (input, internal variable or system bit) from 0 to 1.
Each edge object is managed by an internal variable independent from
the variable internally used:
The edge is valid exactly during a complete cycle: if the variable moves
after the edge, the edge is easily seen on the next cycle.
Possible bug with indexed bits, if the index has varied from one cycle to
the next cycle.
1 byte is used by the edge object
Complex expressions and word bits can be managed.

Falling edge

It is activated when there is a change in the value of the variable
represented (input, internal variable or system bit) from 1 to 0.
Same remarks as those already done for rising edge can be done.

FUNCTION When having a function imported to the current project it can be inserted
as a ladder instruction. Just define input variables and connect the correct
outputs.

Operation

Operations between variables can be defined with the use of the
Operation instruction.

On

It is activated when the combination on the left results into 1. Its activation
means that it has a value logic 1.

Off

It is activated when the combination on the left results into 0. Its activation
means that it has a value logic 0.

Set

It sets the variable associated to 1. The variable can only be set to 0 with a
Reset. It is usually used for bits storage.

28

MicroLADDER V14
Software for PLC programming

Item: symbol
and name

Description

Reset

It sets the variable associated to 0. It deactivates a variable previously
activated with a Set.

Call

It calls a page and executes its code. Then it turns back to the next line
where this call was located.

Jump
It enables to jump ahead some program instructions to a certain anchor.

Back
It enables to jump back some program instructions to a certain anchor.

Anchor

It serves as anchor for Jump and Back instructions (through the Anchor
Index) and as program text comment.

Comment

It allows to add a comment zone inside the project.

Insert blank
lines

It adds blank lines to set space for other objects.

Remove blank
lines

It takes off useless spaces.

Paste It pastes objects copied previously.

For connecting items with each other, just double click in the background line of the
ladder grid where a connection needs to be established or click and drag from one item to
another (or to a line). For disconnecting items, right-click and select Disconnect or double
click on the connection you want to delete.

 2.3 Creation of a program
In order to better understand how to create programs with MicroLADDER, some examples
are shown in the current section.

 2.3.1 First program in ladder
For a better understanding of the programming in MicroLADDER, a simple exercise is
being done. A PLC is going to be programmed with a very simple application. The system
to be programmed consists of the following elements:

- PLC MicroARM-A1

29

MicroLADDER V14
Software for PLC programming

- 1 digital input at the %I100 address: push button
- 1 digital output at the %Q100 address: a LED

- The back-light of the LED screen is lead by the %Q0 HMI input. For those addresses see
MicroARM-A1 manual user.

The program to be created has to do the following things:
- The LED will only be ON when pushing the push button. Otherwise, it will always be

OFF.
- When the LED is ON (that means the push button is pushed), the MicroARM-A1

screen has also the back-light ON and the text shown is the following:
◦ First line: “LED is ON” positioned on the left side of the screen
◦ Second line: “Screen is ON” positioned on the left side of the screen

- When the LED is OFF (that means the push button is released), the MicroARM-A1
screen has the back-light OFF and the text shown is the following:

◦ First line: “LED is OFF” positioned on the right side of the screen
◦ Second line: “Screen is OFF” positioned on the right side of the screen

For writing this program, the function WriteText is being used. Figure 16 shows this
program already implemented in MicroLADDER.

30

Figure 16. First program created with ladder.

MicroLADDER V14
Software for PLC programming

Ladder elements considered for the program, can be described as follows.

Objective Digital interpretation Ladder

When pushing the push button... %I100 changes from 0 to 1 Rising edge

When releasing the push button... %I100 changes from 1 to 0 Falling edge

… LED or back-lightning ON. %Q100 or %Q0 is set to 1 Set

… LED or back-lightning OFF. %Q100 or %Q0 is set to 0 Reset

 2.3.2 First program in C
The similar exercise is being performed in the current section, so the same context has to
be analysed.
The C code expected would be the following:
if (%I100 == 1)

{
%Q100=1;
%Q0=1;
WriteText(“LED is ON”,”Screen is ON”,0,0);
}

else
{
%Q100=0;
%Q0=0;
WriteText(“LED is OFF”,”Screen is OFF”,2,2);
}

 2.3.1 Combining Ladder and C (including an example)
As already mentioned in previous sections, it is also possible to combine a program with
both ladder and C code by structuring it in different pages. The same exercise as the one
explained before is being divided into two pages as follows:

- A first page includes the program that shows the text on the screen when pushing
the push button.

- A second page includes the program that activates the LED and the back-light of the
LED screen.

This is being done in two ways as well:
- First, the main program is being written in ladder and it calls a C page.
- Second, the main program is being written in C code and it calls a ladder page.

Taking into account these considerations, the new program will be as it is shown in Table 7
for the first case.

Table 7. Page structure and code for the combination of the first program in MicroLADDER
combining ladder and C code.

31

MicroLADDER V14
Software for PLC programming

Page 1

Page 2 if (%I100==1)
{
%Q100=1;
%Q0=1;
}

else
{
%Q100=0;
%Q0=0;
}

Taking into account these considerations again, the new program will be as it is shown in
Table 8, for the second case.

Table 8. Page structure and code for the combination of the first program in MicroLADDER
combining C and ladder code.

Page 1 if (%I100 == 1)
{
WriteText("LED is ON","Screen is ON", 0,0);

32

MicroLADDER V14
Software for PLC programming

page_2();
}

else
{
WriteText("LED is OFF","Screen is OFF", 0,0);
page_2();
}

Page 2

 2.3.2 Compilation and loading to the PLC
After the program has been created, it has to be compiled before charging it into the PLC.
It is advisable to save the project before compiling it by doing File>Save as from the menu
bar. You can compile then the program selecting Program>Compile.
You may specify where do you want to save this new files:

- If your PLC includes a SD card reader and you wish to load the program by using this
mean, copy files to the SD card directly. The program will be automatically loaded when
inserting the SD card into the PLC.

- If you do not want to load the program with the SD card or your PLC does not allow
this option, just select a folder in your PC. You will have the to load the .hex file to your PC
via MicroCONTROL software.

If there are any errors in the program a warning message will pop up. Please check you
program before compiling it again.
If the compiling is successful the files main.hex, main.cfg, loadmain and size.txt will have
been created and a new window will pop up to confirm that the compilation was
successful. For further information on files created see sections.

 2.4 Creation of a function
A function is an application which can be imported inside another application. This can be
useful when managing identical sub-parts inside a program or in several programs. A
function can also call other functions.
For the creation of a function, an application has to be created and saved as a classical
application, without declaring the type of PLC. For the declaration of variables, the field
“Parameter” has to be defined, selecting one of the following options:
Internal: the variable is only valid inside the function. It is initialized at every call of a
function, except in the case of having the “Global” property selected.

33

MicroLADDER V14
Software for PLC programming

Input: the value given by the calling application is taken at the call of the function. It
appears inside the function plot on the Ladder page.
Output: the value given by the calling application is taken at the call of the function. The
value is resent to the calling application at the end of the function execution. It appears
inside the function plot on the Ladder page.
External: the value given by the calling function is taken at the call of a function. The value
is forwarded to the calling application at the end of the function execution. It does not
appear inside the function design on the Ladder page.

Note:
- The Timer function can be used if the variable is declared with the Global property. The
system is in charge of decreasing it with the correct period, even if the function is not
regularly called.
- A function cannot access the system words bits (%S and %SW). They must be accessed
as parameters.
- Each time a function is used, it arranges its own memory space. This allows to use the
same function many times inside a program and save data to memory at each call, from
current cycle to next cycle.

 2.4.1 Defining variables
As said before, only array variables need to be defined manually. However, in the case of
functions, it is necessary to manually define input and output variables of the function
created.

 2.4.2 Use of a function
The function must be imported inside the application by launching the “Library/Import
function“ command. A single import is enough, even if the function is used many times.

 2.4.2.1 Ladder
A “Function” object must be inserted into a program page by using Add/Function.
For the binary type data, contacts and coils can be connected to the function's
connections. For the digital type data, double click on the function and define the
exchanged variables. This last method can be also used for the binary type data.

34

MicroLADDER V14
Software for PLC programming

WriteText function.

8.9.2.2 C code
The function must be called by its name and variables must be introduced as parameters
in the same order that they were declared: first the input variables, then output variables
and finally external variables. This is similar to the call of a C function, with output and
external variables being refreshed, even if they are not in the call of the function.

WriteText function.
string1=”Good morning”;
string2=”Good night”;
align1=1;
align2=1;
WriteText (string1, string2, align1, align2);

 2.5 Using timer
In general, the timer presents 2 different status: inactive timer and active timer:
The timer is inactive when its value is zero or lower.
The timer is active while its value is higher than zero and lower than its countdown period
value. In this case it decreases with the countdown period indicated in the variable.

Understanding the timer
At the first state there is no time elapsed (the binary variable Tempo_elapsed is set to 0),
the value of the countdown period (100) is loaded in the Tempo variable. The status of
the timer is inactive. While Tempo_elapsed is 0, the Tempo variable remains set to 100, so
no countdown is performed.
At the second state, the binary variable Tempo_elapsed is set to 1. The value of the
countdown period (100) is no longer written inside the Tempo variable and the value of
Tempo decreases. The status of the timer is active.

35

MicroLADDER V14
Software for PLC programming

At the third state, the value of Tempo drops off to 0 after the countdown. The timer has
then expired, being inactive again.

Note: It is possible to use a bit to create a timed variable. In this case, the time base is
equal to the timer value.

 2.5.1 How to use a timer
For the use of the timer, the property “Timer” of a variable must be set. Just define the
countdown period (in ms) inside the “Timer” property and this variable will be managed
by the system as a time delay.
The time delay duration is equal to the variable value multiplied by the “Timer” property
of the same variable.
The use of a timer in ladder or C is similar, as in both cases the property “Timer” of the
variable used as timer has to be set.

 2.5.2 Examples of the use of timer
To better understand how to use a timer in a program, the following example is being
done. Considering again the PLC MicroARM A1, the program to create has to do the
following things:

- When pushing the upper button (%I0) a counter is activated. This counter only counts
the time when being pushed.

- When releasing the button, the counter resets to zero.
- After 3 seconds with the button being pushed, the backlight of the LCD screen turns

on if it was off, or off if it was on.
This program can be created in ladder as it is shown in Figure 17.

36

MicroLADDER V14
Software for PLC programming

The counter action has been assigned to the %M1 variable. For establishing the timer, just
change the properties of this variable and set the value of 3 seconds. (Be aware that the
unit considered in the properties is millisecond, so 3000ms should be written).

 2.6 Using a GUI (HMI)
Some PLCs include a graphic screen, whose graphic user interface can be easily designed
with the MicroHMI software. This software is complementary to MicroLADDER, and has
been conceived for the development of Human–Machine Interface.
Adding a GUI to a MicroLADDER program provides an extra degree of flexibility in the
PLC programming with MicroLADDER, as it is possible to easily interact between a ladder
or C program and a GUI, by linking variables, functions and/or sequences of code.

 2.7 MicroHMI
MicroHMI is the specific software created for the easy design of graphical HMI. This
software allows to insert pictures from file, push button, toggle button, text areas and
many other options in order to easily design the user interface of a PLC screen.
For further information regarding MicroHMI, please read the MicroHMI user guide.

 2.8 How to insert a GUI
As previously introduced, the management of GUIs can be only considered when
programming a graphic PLC. When programming this type of PLCs, it is possible to
additionally include a GUI into a MicroLADDER application when programming. You can
do it by selecting Program>Import HMI from the menu bar, and selecting a .vu file already
created with MicroHMI.

 2.9 How to configure a GUI
Once a GUI has been imported into a MicroLADDER program, both files, the MicroHMI .vu
file and the .lad file can interact between them to relate functions or actions with graphical
effects. This interaction can be done through variables defined in MicroLADDER and

37

Figure 17. Example with the use of a timer in MicroLADDER.

MicroLADDER V14
Software for PLC programming

assigned in both files.
It is important to know that there is no sign in MicroLADDER that warns whether a program
contains a GUI imported or not.

 2.9.1 Example
To understand better how to use a GUI in a program, the following example is being done.
Considering the PLC MicroARM A2, the program to create has the following configuration:
First of all, a simple GUI is being created with MicroHMI software. This GUI will contain the
following objects:

- A text field that will show the value of a word %SW5, that means, the word containing
the seconds of the current time.

- A dial that will show as well the value of the word %SW5, up to a maximum angle of
180º, with a fill color defined by a new user variable called “DialColor”.

- A push button linked to variable %M0. When pushing the button, the variable turns
into 1. When releasing the button, the variable turns back to 0.
The MicroLADDER program will be very simple as well, and will just include a single
function: if the value of the variable %M0 is 1, then the DialColor turns into red, otherwise,
the DialColor is blue.

For the creation of the .vu file with MicroHMI a new project has to be created. Then, the
following objects are being added:

A text field. The size of this field can be manually adjusted with the mouse, and the
appearance (color, border, etc.) can be defined as the user may want to. For this example,
only the property “Text field” will be specified as dynamic with value %SW5 whitch means
that the text will take value of the %SW5 variable.
A push button. For this example, the logo of Sirea has been chosen for the appearance of
the push button. For this example, only the property “Main variable” will be determined
as %SW5.
A dial. The main variable, it is the variable represented in the dial, will be the %SW5, and
the color will be specified by the variable DialColor, so in the property Fill Color, this
variable has to be specified as a dynamic with value DialColor.
We could additionally change the background color of the screen by double clicking on it
and specifying the background color property, setting it, for example, to yellow #FF0.
The appearance of this interface can be similar to the shown in Figure 18.

38

MicroLADDER V14
Software for PLC programming

The next step is to create the program in MicroLADDER and import the GUI just created.
For this purpose, create a new project in MicroLADDER, do Program>Import HMI and
select the .vu file just created from the explorer window that pops up.
This program will just include a single C Page, with the following code:
if (%M0) DialColor="#F00";
else DialColor="#00F";
With this code the DialColor will turn into red when the value of variable %M0 is 1, and will
turn back to blue when its value is 0. And variable %M0 will turn into 1 when pressing the
push button on the interface. That means that, when pressing the button, the dial will
change into red color.
It is important not to forget to define variables %M0 and DialColor (%MS) in
MicroLADDER. As %SW5 is a system word, there is no need to define it.

 3 SOFTWARE ENVIRONMENT

 3.1 System architecture

 3.1.1 Monitor software
The monitor (or monitor software) is the base software layer, which is loaded by Sirea. It
allows to load the software application. The user will not need to modify it unless a new
software upload may require reloading the monitor software.
If an SD card is available when switching on, FORCE_MON and RUN parameters from file
“MAIN.CFG” available on the SD card will determine the launch of the main loop and the
application.

39

Figure 18. Example of the appearance of the interface created.

MicroLADDER V14
Software for PLC programming

Parameters are saved at the same time on the SD card and on the EEPROM or FRAM. It is
thus, possible to operate without the SD card. The monitor is loaded by Sirea.

 3.1.1.1 LED showing operational stat of the PLC
This LED can be welded on the electronic card or accessible on a connector.

 3.1.1.2 Monitor mode
The LED flashes slowly: 500ms ON, 500ms OFF. The PLC is under Modbus control. It can
be controlled by MicroCONTROL.

 3.1.1.3 Transferring the program from the SD card to the PLC memory
The LED flashes quickly: 100ms ON, 100ms OFF.
The transfer only lasts few seconds. It happens when MicroCONTROL has been
transferred. You can transfer it by pushing the button or by going the SD card parameter.

 3.1.1.4 STOP mode
The LED flashes slowly and stays mainly OFF: 100ms ON, 900ms OFF.
The PLC is not on the monitor anymore, the main loop begins, the application does not
run.

 3.1.1.5 RUN mode
The LED flashes slowly and stays mainly ON: 900ms ON, 100ms OFF.
The application runs.

 3.1.1.6 Incompatible versions between the monitor and the application
The LED lights static red. This only happens when the application begins, the data
structures saved by the monitor is different from the data structures saved by the
application. This can create issues with the saved variables.

 3.1.2 "MAIN.CFG" file
This file can be found on the SD card. It has the parameter setting. It is read and rewritten
while switching on, while launching the application or while inserting the SD card.
Therefore, if the file is incomplete, it is fully rewritten. If changes need to be made on this
file, it is important to proceed carefully.
Some characteristics from this file can be changed through variables if it's needed (see
Table 9).

Table 9. Description of the MAIN.CFG variables.
MAIN.CFG variables Description
FORCE_MON It forces to stay on the monitor and not to force the application

if its value is 1
LOAD It indicates the need of loading the program into the memory if

its value is 1. It is then reset to 0 at the end of the loading
process

FIRST_RUN It indicates that variables must be initialized if its value is 1. It is

40

MicroLADDER V14
Software for PLC programming

not necessary to set the variable to 1 when loading, it is
automatically done by the system. This characteristic can be
controlled through the variable %S2.

RUN It allows to jump from the application in STOP mode to the
application in RUN mode, when its value is 1.

RESET_SW It indicates that a cycle time violation (watchdog) has taken
place thus blocking the PLC on the main loop, when its value is
1. This characteristic can be controlled through the variable
%SW21.

RESET_CFG It allows to reinitialize variables of the “MAIN.CFG” file if its
value is 1.

LOAD_IO_CFG It allows to reload the “var.csv” file and reinitialize the log of
curves, alarms and events. This characteristic can be controlled
through the variable %S19.

MODE_DST It allows to memorize the management of the summer time. This
characteristic can be controlled through the variable %SW11.

TIME_OFF It allows to fix the difference with the UTC time in minute. It is
useful for automatic time-setting. It is the variable %SW12.

BOOT_VER It indicates the version of the boot installed on the PLC. It is the
variable %SW23.

W_SSID It allows to set the SSID (access point name) for the Wi-Fi. The
standard allows the use of 32 characters maximum.

W_STYPE It allows to set the type of encryption for the Wi-Fi. The possible
values are “” (empty character string that uses automatic
detection), OPEN (no encryption), WEP, WPA, WPAAES,
WPA2AES, WPA2TKIP, WPA2

W_SKEY It allows to set the security key for the Wi-Fi

Example of Main.CFG file with default value if they don’t exist. It shows that if there is no
Main.CFG file on the SD card, the PLC will launch the main loop of the application present
in memory. If there is no application, the system will be blocked.
FORCE_MON=0
LOAD=0
RUN=0

 3.1.3 Loadmain file
When this file is present on the SD card, the application is reloaded and the file is deleted.
This method is equivalent to setting the LOAD variable to 1, but it avoids changing the
other variables in the "MAIN" file. CFG". The content of the file is not important, only its
presence counts. So it is possible de create a file called “loadmain” on the SD card. The
PLC detects this file and loads the file main.hex in its memory. The quickest method is to
let MicroLADDER save the compiled files directly on the SD card, and then to put the SD
card in the PLC.

 3.1.4 Loading an application
41

MicroLADDER V14
Software for PLC programming

Having an SD card is not compulsory. If you have one it must be formatted into FAT32.

 3.1.4.1 MicroCONTROL
MicroCONTROL software enables to load “.hex” files, that means, already compiled files.
The transfer can be done using a serial port or the Ethernet port. It is thus possible to load
it remotely from the application’s code but not from the HMI code.
The file transfer takes place first to the SD card, if there is a SD card available. After the
transfer process the file will be loaded into the PLC memory. The application will be then
started by MicroCONTROL.
In the case of loading for the first time an application into the PLC, it is necessary to
establish FORCE_MON=1 inside the MAIN.CFG file of the SD card. On the contrary, the
PLC will try to launch the main loop of the application, being it in-existent.

 3.1.4.2 SD Card
If the PLC includes a SD card you can just copy the file compiled by MicroLADDER
(“main.hex”) to the SD card and the file “MAIN.CFG” created that contains the following
information:
FORCE_MON=0
LOAD=1
RUN=1

The SD card must be then inserted in the PLC. The operating status LED indicates the
program transfer from the SD card to the PLC memory by means of a fast blinking. Once
the program is transferred, the operating status LED indicates the execution of the
application with a blinking, mainly with the status LED light on.

A second option is to use the programming button to load programs. There are specific
cases where the loading of a program must be executed manually by pressing buttons
provided in some PLCs:

- If the user saves previously the file “MAIN.HEX” on the SD card, but not the file
“MAIN.CFG”

- If the user wants to reload an old .hex file (not a .hex file just generated).

In these cases, after inserting the SD card the reset button must be pressed, and before
the end of the first second, the programming button must then be pressed. The operating
status LED indicates the program transfer from the SD card to the PLC memory by means
of a fast blinking. When loading is done, it indicates that that the PLC is on the main loop
by blinking slowly, mainly with the status LED light off.

For starting the application, the loading button must be then pressed for 3 seconds. The
operating status LED indicates the starting of the application with a blinking, mainly with
the status LED light on. The method using the SD card allows as well to copy the
management files of the HMI. It is possible to add the file "Loadmain " without changing
the MAIN. CFG ".

42

MicroLADDER V14
Software for PLC programming

The fastest way to load a programm is to saved the compiled file directly on the SD card
when MicroLADDER tells where to save at the end of the compilation. Thus, MicroLADDER
will automatically edit “MAIN.CFG” and "loadmain" files.

 3.2 Type of data
It is important to note that MicroLADDER manages those PLC variables able to be used in
ladder objects, that means, those accessible to real time monitoring through the software.
However, it is sometimes different from variables that the user can declare inside C pages.

 3.2.1 DIGITAL inputs
Value is 0 or 1. The number of DIGITAL inputs (binary inputs) depends on the PLC.
Prefix for DIGITAL inputs: %I (I: Input bool) Example: %I0.
These data are visible in standard Modbus by shifting, example %I0 ⇒ %M20000.

 3.2.2 ANALOG inputs
Value range depends on the PLC used and on the input assignment. The number of
ANALOG inputs also depends on the PLC.
These data are visible in standard Modbus by shifting. Example: %IW100.
Some PLCs allow the configuration of the analog inputs through the use of jumpers. The
property “configuration” of analog variables must be then adjusted with MicroLADDER to
meet the proper value range and calibration needs.

Table 10. Options available for the property "configuration" in analog inputs.
Property
"Configuration"

Type of analog input

0 Default configuration. It corresponds to lower value for
property configuration available in the PLC.

1 0-20mA. Value range*: 0-20000 points

2 0-10V. Value range* : 0-10000 points

3 PT100. Temperature in decimal of degree Celsius.
* In some specific cases this value range may vary.

 3.2.3 DIGITAL outputs
Value is 0 or 1. The number of DIGITAL outputs depends on the PLC.
These data are visible in standard Modbus by shifting. Example %Q0 (Q: Output bool)..

 3.2.4 ANALOG outputs
Value range depends on the PLC used. The number of ANALOG outputs also depends on
the PLC.
These data are visible in standard Modbus by shifting. Example: %QW (QW: Output
words), %QW100.

 3.2.5 PWM outputs

43

MicroLADDER V14
Software for PLC programming

Frequency is defined in Hz with %SW26. This value must be between 0 and 65535Hz (it has
to be noted that, technically, electronics does not allow to follow frequencies above
10000Hz).
Cycle time is defined with %QW by PWM output. This value must be between 0 and 1000.
For instance, to have a time-slot of 20% at 1 and 80% at 0, the %QW variable must be set
to 200.
To deal with a binary output, %SW26 must be set to 0, and %QW must be set to 0 or 1000
for setting the BIN output to 0 or 1.
The default value of %SW26 and variables %QW is 0, what corresponds to an output of 0V.
When the value of %SW26 is 0, the value of the frequency is equal to the maximum
frequency value: 100000Hz. This allows to answer faster to changes in status in binary
mode, as the current period necessarily ends before applying the new cycle time.

Note:
- It is possible to set a frequency up to 65535Hz. However, when the frequency reaches

too high values the signal gets worse (change in transistor status), even becoming
unusable. The maximum limit is approximately 10kHz depending on the load.

- To visualize a signal in the oscilloscope, a resistance of approximately 1kΩ must be
connected to the output terminals.

- The output PWM signal varies between 0V and Vcc (supply voltage).

 3.2.6 Boolean
Value is 0 or 1. Prefix for boolean: %M (M: Main bool). Example : %M0.
Note: Boolean are character bits. Therefore, 8 bits use 1byte in memory. Accessing a bit
takes longer that accessing a byte or a word.

 3.2.7 Integer
Value range from 0 to 65535. Prefix for integer: %MW (MW: Main Word). Example : %MW0.

 3.2.8 Long
Value range from – 2 147 483 648 to 2 147 483 647. Example: %MD0.These data are visible
in standard Modbus by shifting.
Example (%MD10: w0 %MW20020 et%MD10: w1 %MW20021).⇒ ⇒

 3.2.9 Float
Value range from 3,4*10-38 to 3,4*1038, both positive and negative values. Example:
%MF0. These data are visible in standard Modbus by shifting.
Example (%MF10:w0 %MW30020 et %MF:w1 %MD30021).⇒ ⇒

 3.2.10 String
The length of the string must be indicated in the field “string size”. Prefix for string: %MS
(MS: Main String). Example: %MS0.
%MS20[5] represents the fifth element of a table of strings. It is equivalent to %MS25.
(%MS20)[5] represents the fifth character of the string %MS20.

44

MicroLADDER V14
Software for PLC programming

It is preferable to use assignment instead of the C classic instruction “strcpy” when
copying a string, since the assignment calls a specific function that controls the size of the
string and avoids overflows.

These data are available in standard Modbus by adding a shift of 50000 on the %MW. Two
characters are placed on a same word. The correspondence of the addresses is complex
because it depends on the string’s size, which is defined at the below addresses.

 3.2.11 System bits
These data are available in standard Modbus by shifting (%S0 %M22000).⇒

Bit Mnemonic Description
%S0 MST Bit set to 1 at the first cycle of the system program, followed by a

switching on or a reloading of the program.
Bit re-established to 0 automatically after executing the first cycle.
This bit is slightly different from %S16 (DEM_C).

%S1 RUN Bit set to 1; set to status 0 by the user program or through data
writing mode via the serial link (RUN/STOP command).
Bit to 1 : program run.
Bit to 0 : program stop.

%S2 INIT Bit set to 0, set to status 1 by the system at the starting of the
program or in data writing mode via the serial link (INIT command).
Bit to 1: loading of the initial values in the data values.
No modifications on saved variables.
Re-established to 0 automatically at the end of the initialization.

%S3 Spare
%S4 Spare
%S5
%S6
%S7
%S8

MSEC_10
MSEC_100
SEC_1
MIN_1

Bits where the change in status is synchronized with the internal
clock.
They are asynchronous with respect to the cycle of the program.
Example S5 : State 1: 5ms – State 0: 5ms.

%S9 Spare
%S10 Spare
%S11 INIT_Q Bit set to 1; set to status 0 by the user program or via the serial link.

Bit to 1: causes the setting of the outputs to 0
Bit to 0: outputs are updated by the user program

%S12 GEL_Q Bit set to 1; set to status 0 by the user program or via the serial link.
Bit to 1: causes the outputs to be frozen at their status
Bit to 0: outputs are updated by the user program

45

MicroLADDER V14
Software for PLC programming

%S13 MAJ_H Bit to 0; set to status 1 by the user program or via the serial link.
Bit to 1: Used to set time and date : copy the values from %SW5 to
corresponding %SW10 in the system clock.
Bit to 0: words from %SW5 to %SW10 are updated by the system to
give current time and date.
Since 29/06/12, this bit is useless. It is possible to change %SW5 to
%SW10 at any time. The change is saved at the end of the PLC loop
cycle.

%S14 RAZDEF Spare
%S15 CDG Bit set to 0; set to status 1 by the system when the program cycle

time goes beyond the maximum cycle time defined by the system
word SW1.
It is automatically re-established to 0 through an INIT command,
either at switching on (mode MST) or by the user program.

%S16 DEM_C Bit to 1 at the first cycle of the user program, no matter the cause of
the restart (switching on, reloading, starting through the console)
Bit automatically set to 0 at the end of the 1st cycle.
This bit is slightly different from %S0 (MST)

%S17 Spare
%S18 SAV_VARS Bit set to 0; set to status 1 by the user program or via serial link.

Variables declared as “Saved” are saved in the EEPROM or in the
FRAM.
Bit re-established to 0 after saving process. See section on Saved
variables for details.
Note: backup should not be performed permanently. The number
of writings of the EEPROM is limited.

%S19 LOAD_IO_
CFG

Bit normally set to 0, set to status 1 by the user program or via serial
link.
It causes the re-reading of “var.csv” file and the reset of the alarms
and events history report.

%S20 RESET_HA
RD

Spare

%S21 RESET_SO
FT

Bit normally set to 0, set to 1 by the system after a reset soft of the
watchdog. This bit is re-established to 1 by the system when the
program restarts. See Mx_CYC: %SW2 and section 3.6 on Watchdog
for further information.

%S22 RESET_ER
R

Spare

%S23 Spare
%S24 ALM_BAT

_RTC
Set normally set to 0, set to 1 by the system when the backup
battery level is low.

%S25 DHCP Use DHCP to set Ethernet port. Socket 3 is used for the initial
request and for periodical requests. It means that DHCP temporarily
takes over the socket at the expense of the use planned by the
application.

46

MicroLADDER V14
Software for PLC programming

%S26 W_DHCP Use DHCP to set Wi-Fi port. On the opposite of the Ethernet, the
Wi-Fi module uses an internal socket that doesn’t interfere with the
application.

%S27
to
%S49

Spare

 3.2.12 System words

These data are available on standard Modbus by shifting (%SW0 %MW42000).⇒

%SW0 T_CYC PLC current cycle runtime in ms.
Only read access.

%SW1 S_CYC PLC cycle time surveillance
Reference value allowing the system to control cycle time overrun
(SW0>SW1) and positioning the %S15 bit (CDG).
Application is not stopped.
Read and write access.

%SW2 Mx_CYC PLC cycle time-out value.
Reference value allowing the system to control a maximum cycle
time overrun. In case of overrun (SW0>SW2), Saved variables are
saved by the system, BIN and ANA outputs are forced to 0 and the
PLC is switched to STOP mode. The %S21 bit (RESET_SOFT) is set
to 1.
Read and write access.

%SW3 Spare
%SW4 WD_HAR

D
Spare

%SW5
%SW6
%SW7
%SW8
%SW9
%SW10

SECONDE
MINUTE
HEURE
JOUR
MOIS
ANNEE

Date and time function.
Words containing current values for date and time.
These words are accessible for both permanent reading and writing
regardless of the situation of %S13 (MAJ_H).

%SW11 MODE_DS
T

Automatic management of summer time.
Value 0: change to summer time is automatically managed by the
system according to French conventions.
Value different to 0: automatic change to summer time not
managed.
The material component (RTC) always keeps the winter time.
Change to summer time considered by system words %SW5 to
%SW10 usable value.

%SW12 TIME_OFF Lag with UTC time (in minutes).
For France, put 60.

%SW13 VERSION_
SYS

System code version. Only read access.

47

MicroLADDER V14
Software for PLC programming

%SW14 VERSION_
APP

Application version. This word is available to the user for the record
of the application version number.

%SW15
%SW16
%SW17
%SW18
%SW19
%SW20
%SW21
%SW22

SAV1
SAV2
SAV3
SAV4
SAV5
SAV6
SAV7
SAV8

These 8 words are available to the user for word backup.
See section on Saved variables for further details.

%SW23 VERSION_
BOOT

Boot version.

%SW24 VERSION_
MLADDER

Version of MicroLADDER that was used for compilation.

%SW25 FREQ_TIM
ER

Calling period of interrupting functions in μs. Functions to be called
need to have the “Call on interrupt” property confirmed.
Value 0: no calling
Value different to 0: calling period in μs.
This value is not saved. It must be initialized by the program.
During the execution of the program, the value can be modified if
needed. Too weak values could block the PLC.

%SW26 FREQ_PW
M

PWM output frequency.

%SW27
%SW28
%SW29
%SW30
%SW31
%SW32

FET1
FET2
FET3
FET4
FET5
FET6

Reading mask. Allows to unable the inputs refreshing. Each input is
linked to a bit. HMI inputs are not affected.
1st and 2nd input bytes
3rd and 4th input bytes
5th and 6th input bytes
7th and 8th input bytes
9th and 10th input bytes
11th and 12th input bytes
Note : a 16 bits input card straddles 2 system words.

%SW33 Spare
%SW34
%SW35

%SW36
%SW37
%SW38
%SW39

SER0
NESC_SER
0
RES_SER0
SPD_SER0
FOR_SER0
TIMEOUT
_SER0

Port configuration (see Modbus details below)
Slave number (variable saved on the SD card) result of the exchange
(see Modbus details below)
Speed code (see Modbus details below)
Communication format (see Modbus details below)
For the MASTER Modbus, maximum time value in ms between the
sending of a frame and the reception of the answer. Default value
3000ms.

48

MicroLADDER V14
Software for PLC programming

%SW40
%SW41

%SW42
%SW43
%SW44
%SW45

SER1
NESC_SER
1
RES_SER1
SPD_SER1
FOR_SER1
TIMEOUT
_SER1

Port configuration (see Modbus details below)
Slave number (variable saved on the SD card) result of the exchange
(see Modbus details below)
Speed code (see Modbus details below)
Communication format (see Modbus details below)
For the MASTER Modbus, maximum time value in ms between the
sending of a frame and the reception of the answer. Default value
3000ms.

%SW46
%SW47

%SW48
%SW49
%SW50
%SW51

SER2
NESC_SER
2

RES_SER2
SPD_SER2
FOR_SER2
TIMEOUT
_SER2

Port configuration (see Modbus details below)
Slave number (variable saved on the SD card) result of the exchange
(see Modbus details below)
Speed code (see Modbus details below)
Communication format (see Modbus details below)
For the MASTER Modbus, maximum time value in ms between the
sending of a frame and the reception of the answer. Default value
3000ms.

%SW52
%SW53

%SW54
%SW55
%SW56
%SW57

SER3
NESC_SER
3
RES_SER3
SPD_SER3
FOR_SER3
TIMEOUT
_SER3

Port configuration (see Modbus details below)
Slave number (variable saved on the SD card) result of the exchange
(see Modbus details below)
Speed code (see Modbus details below)
Communication format (see Modbus details below)
For the MASTER Modbus, maximum time value in ms between the
sending of a frame and the reception of the answer. Default value
3000ms.

%SW58
%SW59

%SW60
%SW61
%SW62
%SW63

SER4
NESC_SER
4
RES_SER4
SPD_SER4
FOR_SER4
TIMEOUT
_SER4

Port configuration (see Modbus details below)
Slave number (variable saved on the SD card) result of the exchange
(see Modbus details below)
Speed code (see Modbus details below)
Communication format (see Modbus details below)
For the MASTER Modbus, maximum time value in ms between the
sending of a frame and the reception of the answer. Default value
3000ms.

%SW64
%SW65

%SW66
%SW67
%SW68
%SW69

SER5
NESC_SER
5
RES_SER5
SPD_SER5
FOR_SER5
TIMEOUT
_SER5

Port configuration (see Modbus details below)
Slave number (variable saved on the SD card) result of the exchange
(see Modbus details below)
Speed code (see Modbus details below)
Communication format (see Modbus details below)
For the MASTER Modbus, maximum time value in ms between the
sending of a frame and the reception of the answer. Default value
3000ms.

49

MicroLADDER V14
Software for PLC programming

%SW70
%SW71

%SW72
%SW73
%SW74
%SW75

SER6
NESC_SER
6
RES_SER6
SPD_SER6
FOR_SER6
TIMEOUT
_SER6

Port configuration (see Modbus details below)
Slave number (variable saved on the SD card) result of the exchange
(see Modbus details below)
Speed code (see Modbus details below)
Communication format (see Modbus details below)
For the MASTER Modbus, maximum time value in ms between the
sending of a frame and the reception of the answer. Default value
3000ms.

%SW76
%SW77

%SW78
%SW79
%SW80
%SW81

SER7
NESC_SER
7
RES_SER7
SPD_SER7
FOR_SER7
TIMEOUT
_SER7

Port configuration (see Modbus details below)
Slave number (variable saved on the SD card) result of the exchange
(see Modbus details below)
Speed code (see Modbus details below)
Communication format (see Modbus details below)
For the MASTER Modbus, maximum time value in ms between the
sending of a frame and the reception of the answer. Default value
3000ms.

%SW91
%SW92
%SW93
%SW94

W_DNS_A
DDR1
W_DNS_A
DDR2
W_DNS_A
DDR3
W_DNS_A
DDR4

Address of the DNS server for Wi-Fi port.

%SW95 W_MODE Operating mode of the Wi-Fi port.
%SW96
%SW97
%SW98
%SW99

DNS_ADR
1
DNS_ADR
2
DNS_ADR
3
DNS_ADR
4

Address of the DNS server for the Ethernet port and Wi-Fi port.
From MicroLADDER 10.0 and system code 13.0 these words are only
available for the Ethernet as there are now words for the Wi-Fi.

%SW100
%SW101
%SW102
%SW103
%SW104
%SW105

MAC_AD
DR1
MAC_AD
DR2
MAC_AD
DR3
MAC_AD
DR4
MAC_AD
DR5
MAC_AD
DR6

Ethernet connector MAC address.

50

MicroLADDER V14
Software for PLC programming

%SW106
%SW107
%SW108
%SW109

IP_ADDR1
IP_ADDR2
IP_ADDR3
IP_ADDR4

Ethernet connector IP address.

%SW110
%SW111
%SW112
%SW113

SUBNET_
MASK1
SUBNET_
MASK2
SUBNET_
MASK3
SUBNET_
MASK4

Ethernet connector subnet mask.

%SW114
%SW115
%SW116
%SW117

GATEWAY
1
GATEWAY
2
GATEWAY
3
GATEWAY
4

Ethernet connector gateway.

%SW118
%SW119
%SW120
%SW121
%SW122

SOCK0

PORT_SO
CK0

NESC_SO
CK0
RES_SOC
K0
TIMEOUT
_SOCK0

Socket communication protocol (see Modbus details below)
Socket port number in slave mode (502 in Modbus, 10000 in VNC,
80 in HTTP, 161 in SNMP)
Socket slave number
Socket result of the exchange
Socket time out

%SW123

%SW124

%SW125
%SW126
%SW127

SOCK1

PORT_SO
CK1

NESC_SO
CK1
RES_SOC
K1
TIMEOUT
_SOCK1

Socket communication protocol (see Modbus details below)
Socket port number in slave mode (502 in Modbus, 10000 in VNC,
80 in HTTP, 161 in SNMP)
Socket slave number
Socket result of the exchange
Socket time out

51

MicroLADDER V14
Software for PLC programming

%SW128

%SW129

%SW130
%SW131
%SW132

SOCK2

PORT_SO
CK2

NESC_SO
CK2
RES_SOC
K2
TIMEOUT
_SOCK2

Socket communication protocol (see Modbus details below)
Socket port number in slave mode (502 in Modbus, 10000 in VNC,
80 in HTTP, 161 in SNMP)
Socket slave number
Socket result of the exchange
Socket time out

%SW133

%SW134

%SW135
%SW136
%SW137

SOCK3

PORT_SO
CK3

NESC_SO
CK3
RES_SOC
K3
TIMEOUT
_SOCK3

Socket communication protocol (see Modbus details below)
Socket port number in slave mode (502 in Modbus, 10000 in VNC,
80 in HTTP, 161 in SNMP)
Socket slave number
Socket result of the exchange
Socket time out

%SW138
%SW139
%SW140
%SW141
%SW142
%SW143

W_MAC_
ADDR1
W_MAC_
ADDR2
W_MAC_
ADDR3
W_MAC_
ADDR4
W_MAC_
ADDR5
W_MAC_
ADDR6

Wi-Fi connector MAC address.

%SW144
%SW145
%SW146
%SW147

W_IP_AD
DR1
W_IP_AD
DR2
W_IP_AD
DR3
W_IP_AD
DR4

Wi-Fi connector IP address.

52

MicroLADDER V14
Software for PLC programming

%SW148
%SW149
%SW150
%SW151

W_SUBNE
T_MASK1
W_SUBNE
T_MASK2
W_SUBNE
T_MASK3
W_SUBNE
T_MASK4

Wi-Fi connector subnet mask.

%SW152
%SW153
%SW154
%SW155

W_GATE
WAY1
W_GATE
WAY2
W_GATE
WAY3
W_GATE
WAY4

Wi-Fi connector gateway.

%SW156

%SW157

%SW158
%SW159
%SW160

WSOCK0

PORT_WS
OCK0

NESC_WS
OCK0
RES_WSO
CK0
TIMEOUT
_WSOCK0

Socket communication protocol (see Modbus details below)
Socket port number in slave mode (502 in Modbus, 10000 in VNC,
80 in HTTP, 161 in SNMP)
Socket slave number
Socket result of the exchange
Socket time out

%SW161

%SW162

%SW163
%SW164
%SW165

WSOCK1

PORT_WS
OCK1

NESC_WS
OCK1
RES_WSO
CK1
TIMEOUT
_WSOCK1

Socket communication protocol (see Modbus details below)
Socket port number in slave mode (502 in Modbus, 10000 in VNC,
80 in HTTP, 161 in SNMP)
Socket slave number
Socket result of the exchange
Socket time out

53

MicroLADDER V14
Software for PLC programming

%SW166

%SW167

%SW168
%SW169
%SW170

WSOCK2

PORT_WS
OCK2

NESC_WS
OCK2
RES_WSO
CK2
TIMEOUT
_WSOCK2

Socket communication protocol (see Modbus details below)
Socket port number in slave mode (502 in Modbus, 10000 in VNC,
80 in HTTP, 161 in SNMP)
Socket slave number
Socket result of the exchange
Socket time out

%SW171

%SW172

%SW173
%SW174
%SW175

WSOCK3

PORT_WS
OCK3

NESC_WS
OCK3
RES_WSO
CK3
TIMEOUT
_WSOCK3

Socket communication protocol (see Modbus details below)
Socket port number in slave mode (502 in Modbus, 10000 in VNC,
80 in HTTP, 161 in SNMP)
Socket slave number
Socket result of the exchange
Socket time out

%SW200
%SW201

%SW202
%SW203

%SW204
%SW205

RF0
NESC_RF0

RES_RF0
FREQ_RX_
RF0

FREQ_TX_
RF0
TIMEOUT
_RF0

LoRa connector configuration (see Modbus details below).
Slave number (this variable is saved in the SD card)
Exchange results (see Modbus details below)
Channel of reception frequency (see radio-frequency details below)
Channel of sending frequency (see radio-frequency details below)
For the MASTER Modbus, maximum time value in ms between the
sending of a frame and the reception of the answer. Default value
3000ms.

%SW206
%SW207

%SW208
%SW209

%SW210
%SW211

RF1
NESC_RF1

RES_RF1
FREQ_RX_
RF1

FREQ_TX_
RF1
TIMEOUT
_RF1

LoRa connector configuration (see Modbus details below).
Slave number (this variable is saved in the SD card)
Exchange results (see Modbus details below)
Channel of reception frequency (see radio-frequency details below)
Channel of sending frequency (see radio-frequency details below)
For the MASTER Modbus, maximum time value in ms between the
sending of a frame and the reception of the answer. Default value
3000ms.

54

MicroLADDER V14
Software for PLC programming

 3.2.13 Modbus Detail
SER0 to SER7
SOCK0 to SOCK3
WSOCK0 to WSOCK3
RF0 to RF1

Port configuration. These variables are not
saved.

Value name Variable
value

Description

COM_PROTOCOL_NONE
COM_PROTOCOL_TCP
COM_PROTOCOL_TCP_CLIENT

0 No protocol or Master Modbus

COM_PROTOCOL_IOBUS 1 IOBus protocol
COM_PROTOCOL_MODBUS 2 Slave Modbus
COM_PROTOCOL_MODBUS_TCP 3 Slave TCP Modbus
COM_PROTOCOL_GFX 4 Gfx protocol (remote screen control)
COM_PROTOCOL_HTTP 5 HTTP protocol
COM_PROTOCOL_UDP
COM_PROTOCOL_UDP_CLIENT

6 UDP master protocol
UDP client protocol

COM_PROTOCOL_DATA 7 TBC
COM_PROTOCOL_TCP_SERVER 8 TBC
COM_PROTOCOL_UDP_SERVER 9 TBC
COM_PROTOCOL_HTTP_QUERY 10 HTTP protocol for the queries (only

since 23/01/17)
Note:
- Default value for serial ports is Modbus. MODBUS_TCP for socket 0 and HTTP for
sockets 1 to 3, except for PLCs including graphic screen where socket 1 is GFX.
- The use of the variable's name instead of its value for initializing the system word is
strongly recommended.

NESC_SER0 à NESC_SER7
NESC_SOCK0 à NESC_SOCK3
NESC_WSOCK0 à NESC_WSOCK3

Slave number for the slave Modbus mode.
These variables do not necessarily need to be
set to 0 for performing master Modbus or
communication without protocol.
These variables are saved on the SD card.

Value name Variable
value

Description

0 Only master Modbus
1 à 255 Modbus slave number

Note : Default value is 1.

RES_SER0 to RES_SER7
RES_SOCK0 to RES_SOCK3
RES_WSOCK0 to RES_WSOCK3
RES_RF0 to RES_RF1

Result of the exchange.
It runs either in transfer or reception.

Value name Variable
value

Description

55

MicroLADDER V14
Software for PLC programming

COM_STATE_READY 0 End of communication
COM_STATE_WAIT 1 Time delay before sending the

frame
COM_STATE_SEND 2 Communication under way (transfer

or reception)
COM_STATE_ERROR 240 Limit from which the default zone is

entered
COM_STATE_ERROR +
MODBUS_ERROR_BAD_RESPONSE

253 Bad answer

COM_STATE_ERROR +
MODBUS_ERROR_INCOMPLETE_RES
PONSE

254 Incomplete answer

COM_STATE_ERROR +
MODBUS_ERROR_NO_RESPONSE

255 Time out : no answer

SPD_SER0 à SPD_SER7 Exchange speed. These variables are saved on
the SD card.

Value name Variable
value

Description

COM_SPEED_NONE 0
COM_SPEED_300 1 300 bauds
COM_SPEED_1200 2 1200 bauds
COM_SPEED_2400 3 2400 bauds
COM_SPEED_4800 4 4800 bauds
COM_SPEED_9600 5 9600 bauds
COM_SPEED_19200 6 19200 bauds
COM_SPEED_38400 7 38400 bauds
COM_SPEED_57600 8 57600 bauds
COM_SPEED_76800 9 76800 bauds
COM_SPEED_115200 10 115200 bauds

Note :
- Default value is 7.
- Speeds 76800 and 115200 do not work for all ports.

FOR_SER0 à FOR_SER7 Exchange format parameter. These variables
are saved on the SD card.

Value Name Variable
value

Description

COM_FORMAT_NONE 0
COM_FORMAT_8N2 1 8 bits, no parity, 2 stop bits
COM_FORMAT_8N1 2 8 bits, no parity, 1 stop bit
COM_FORMAT_8E1 3 8 bits, even parity, 1 stop bit
COM_FORMAT_8O1 4 8 bits, odd parity, 1 stop bit
COM_FORMAT_7E2 5 7 bits, even parity, 2 stop bits

56

MicroLADDER V14
Software for PLC programming

COM_FORMAT_7O2 6 7 bits, odd parity, 2 stop bits
COM_FORMAT_7E1 7 7 bits, even parity, 1 stop bit
COM_FORMAT_7O1 8 7 bits, odd parity, 1 stop bit
COM_FORMAT_7R2 9 7 bits, parity forced to 0, 2 stop bits
COM_FORMAT_7R1 10 7 bits, parity forced to 0, 1 stop bit
COM_FORMAT_7S2 11 7 bits, parity forced to 1, 2 stop bits
COM_FORMAT_7S1 12 7 bits, parity forced to 1, 1 stop bit

Note : Default value is 2.

 3.2.14 Radio Frequency details

FREQ_RX_RF0 to FREQ_RX_RF1
FREQ_TX_RF0 to FREQ_TX_RF1

Number of the frequency channel of the radio
connector. These variables are saved on the SD card.

Value name Variable value Description
RF_FREQ_NONE
RF_FREQ_0

0 868,125 MHz

RF_FREQ_1 1 868,475 MHz
RF_FREQ_2 2 868,950 MHz
RF_FREQ_3 3 869,525 MHz

 3.2.15 Edge management
Every « edge » object is managed by an internal variable independent from the variable
used inside:

- The edge is valid for a full cycle: if the variable moves after the edge, the edge is
seen at the following tour.

- Possible bugs with indexed bits if the index varies from a cycle to another.
- Uses 1 byte per “edge” object.
- Can manage complex expressions and words bits.

 3.3 Importing the variables by overwriting the present variables.

 3.3.1 General
Address: for a simple variable it is a digital value. For a table it is the address of the first
element followed by "[]".
Number of elements: indicates the number of element in a table scenario.
Number of characters: indicates the number of characters in a character string scenario
(%MS).

57

MicroLADDER V14
Software for PLC programming

 3.3.2 Programming
Init value: value charged in the variable when charging the application or when asking
initialization. If the variable is saved, this value is only used at first start.
Saved: If the PLC has a saved memory, the value will be kept when the power is
interrupted. For backups on EEPROM or FRAM, the instant of the backup is at the user
initiative.
Timer (in ms): the period at which the variable will be decremented from 1 to the value 0.
Global: this property is to be used with functions. It allows the variable to keep its value
between two calls.
Parameter: This is used for the variables of a function. See below the chapter dealing with
the realization of functions.
Position: This is used for the variables of a function. This is the number of the variable for
the graphical representation or the C-language call.
Label: This is used for the variables of a function. This is the text that appears on the
graphic representation.

58

MicroLADDER V14
Software for PLC programming

 3.3.3 Input / Output
Configuration: setting for analog inputs (see chapter on analog inputs).
Bound variable: allows to link to another application variable to possibly scale.
Invert state: only used for binary variables. Allows to reverse the state between the
input/output variable and the associated variable.

 3.3.4 Communication
Remote address: This is the name of the variable of a distant device followed by a point
and the number of the equipment. See the chapter IO Bus for more details.
Invert state: Used only for binary variables. Allows to reverse the state between the local
variable and the remote variable.

 3.3.5 Logging
Allows to set the logging of a variable.

59

MicroLADDER V14
Software for PLC programming

 3.3.6 Remote server
Access: Indicates whether the variable is read-and write-accessible by MicroSERVER.
Label: Description text of the variable that will be displayed on MicroSERVER.

 3.3.7 Display
Display: Allows to set the display format for dynamic visualization in MicroLADDER.
Format: Allows to set the display format in MicroHMI by allowing static text to be added
before and after the numeric value.
Float precision : Sets the number of decimal places for floating-type values.
Min and Max display value: Used for graph bar-type graphical objects or MicroHMI curve
objects. This allows to set the viewing range.

60

MicroLADDER V14
Software for PLC programming

 3.4 Application implementation

 3.4.1 Fonction
A function is an application that is imported into another application. It is very useful when
there are identical sub-parts in one or several programs. A function can make itself call to
other functions.

 3.4.2 Fonction implementation
Make an application and save it as a classic application without importing system code
and without declaring a type of PLC.
For the declaration of variables, the field “parameter” must be filled with one of the
following four possibilities:

Internal: The variable is only valid inside the function. It is initialized at each call of the
function unless the "global" property is selected.
Input: When the function is called, it takes the value that the calling application gives it. It
appears in the drawing of the function on the Ladder page.
Ouput: When the function is called, it takes the value that the calling application gives. At
the end of the function's execution, the value is returned to the calling application. It
appears in the drawing of the function on the Ladder page.
External: When the function is called, it takes the value that the calling application gives.
At the end of the function's execution, the value is returned to the calling application. It
does not appear in the drawing of the function on the Ladder page.

Notes:
- It is possible to use the Timer property in a function provided that the variable is

declared with the global property. The system will take care of the decrement with
the correct period, even if the block is not called regularly.

- A function cannot access the bits and system words (%S and%SW). You must pass
61

MicroLADDER V14
Software for PLC programming

them as a parameter.
- Each time a function is used, it has its own memory space. This allows to use the

same function several times in a program and to keep in memory from one cycle to
another (if variable with the global property) data for each call.

 3.4.3 Using a function
The function must be imported into the application by launching the command “Library /
Import a function”. Even if the function is used more than once, only one import is
required.

 3.4.4 Use in Ladder
Place in a program page an object “function”.
For binary information it is possible to connect contacts and spools to the connections of
the function. For numeric-type information, you need to double-click the function and fill
in the exchanged variables. This method can also be used for binary-type information.
Use in C
Call the function by its name and pass as parameters the variables in the declaration order
starting with the input variables, then the output variables and finally the external
variables. This sounds like a function call in C, except that the output and external
variables are refreshed, even if they are in the function call.

 3.4.5 Using library
It is possible to import a library of functions. The file to import has the LIB extension. This
is a specific format created by Sirea.

 3.4.6 Calling a page
In a C-language page, it is possible to call another page either by its number or by its
mnemonic.
Example :
page_2() ;
init() ;

 3.4.7 Temporization
To achieve temporization, the "Timer " property of a variable must be used. Just put in the
property “Timer” the period (in ms) of decrement of the variable and the system manages
this variable as a temporization. The duration of the temporization is equal to the value of
the variable multiplied by the «Timer« property of that same variable.

In the general case, a temporization has 3 different states: inactive temporization, active
temporization and temporization completed. In MicroLADDER, there are only 2 possible
states: active temporization and temporization completed.

The first solution is to force the temporization to its maximum value only and obligatory
when the temporization is inactive. In the active temporization and completed
temporization, do not write to the time-controlled variable. The temporization status will

62

MicroLADDER V14
Software for PLC programming

be indicated when the time-controlled variable equals 0.

The second solution is to force the temporization to its maximum value when the
temporization becomes active. In this case, the temporization should not be tested when it
is inactive.

Example of C-language management
switch (nGrafcet)
{
........

case 4 :
//Init tempo
Tempo:= 100;
//Etape suivante
nGrafcet:= 5;

break;
case 5 :

if (Tempo == 0) {........}
break;

........}
Note: It is possible to use a bit to make a timed-controlled variable. In this case, the time
base is equal to the value of the temporization.

 3.4.8 Global variables
It is possible to declare global variables and functions. To do this, put the code between

63

MicroLADDER V14
Software for PLC programming

<global>and </global>tags. When parsing the file, this code will be moved to a globally
declared area.
This brings a restriction because it is not possible to use <global>and</global> texts
directly in a string character.

 3.4.9 Available RAM size
The declared variable uses some RAM space, and if this variable is initialized, it uses space
in flash memory.
To know the volume of RAM used, check the “size.txt” file created after each compilation.
All values are expressed in bytes.
Text column: size of the program code. It should not be higher than the size of the flash
memory – 64kB- used by the monitor.
Data column: size of initialized variables.
Bss column: size of non-initialized variables.
Dec column: memory size (program + variables) in decimal
Hex column: memory size (program + variables) in hexadecimal
The sum of the data column and the bss column should not exceed the RAM.
The sum of the text column and the data column should not exceed the Flash, knowing
that 64 ko are already used by the monitor.

Example:
 text data bss dec hex filename
 60380 16 4644 65040 fe10 main.elf

 3.5 Saved variables

 3.5.1 Saved RAM

64

MicroLADDER V14
Software for PLC programming

Some PLCs have a saved RAM. Just by selecting the option “Saved” inside the variable
properties, the backup is autonomously managed by the system.

 3.5.2 EEPROM or FRAM
If the PLC does not have a saved RAM but an EEPROM or a FRAM, it is possible to use the
saved variables. When %S18 switches to 1, a backup is launched for all the variables that
have the option “Saved” selected.
With the current MicroLADDER version, instructions for the manual backup should be no
longer used. There is indeed a substantial risk to use memory areas used by the system.

Note: It is not recommended to do this in all running cycles, as the EEPROM is limited in
number of writing and the time required to access it may be a little too long.

 3.5.3 System words
%SW15 and %SW22 system words are available to the user for the backup of words on the
SD card. Backups are only launched when a change in the value takes place. Backups can
be launched at the end of the Modbus communication with the programming device (if
the value has been forced by the communication) and at the end of the PLC cycle (if the
value has been changed by the application). Each backup takes 180-200ms.
Word reading is performed transparently at the initialization.
A double backup is launched: on the SD card and on the EEPROM or FRAM.

 3.6 Watchdog

 3.6.1 Cycle Time Exceeded
You must set %SW1 in Ms. When %SW0 is greater than%SW1, the system sets %S15 to 1.
There is no blockage of the cycle. %S15 must be delivered voluntarily to 0. If % SW1 is 0,
there is no cycle time control.

 3.6.2 Watchdog soft
You must set %SW2 in Ms. When %SW0 is greater than %SW2, the system performs a
backup of the variables, forces the TOR and ANA outputs to 0, passes the PLC in STOP
mode, sets %S21 to 1, writes 1 to the RESET_SW setting on the SD card. If %SW2 is 0, the
system uses the default value (3000 ms).

 3.7 System functions/Internal functions

 3.7.1 Configuration of the system code

 3.7.1.1 Optimize the code size
When this option is 1, the size of the code is reduced, but the execution time is increased.
By default, the option is set to 0.

 3.7.1.2 AUTO_STOP
When this option is set to 0, during a soft watchdog, the application restarts by itself. %S21

65

MicroLADDER V14
Software for PLC programming

is set to 1 and the application must reset it to 0.
When this option is set to 1, during a soft watchdog, the application will not reboot, and
the PLC will remain on the main loop. %S21 is set to 1 and is reset to 0 if the application is
restarted. By default, this option is 1.

 3.7.2 DHCP
When this option is set to 1, it allows the possibility to use the DHCP function (assigning IP
address automatically by a DHCP server).
When this option is set to 0, it saves in code size. By default, the option is set to 1.

 3.7.3 DNS
When this option is set to 1, it allows the possibility to use the DNS function (converting a
literal web address to an IP address by a DNS server).
When this option is set to 0, it allows to save in code size. By default, the option is set to 1.

 3.7.4 GFX
When this option is set to 1, it allows remote control of the HMI using the MPad software
and the Ethernet link. An Ethernet connector socket is needed for this feature.
When this option is set to 0, it allows to save in code size. By default, the option is set to 0.

 3.7.5 HTTP
When this option is set to 1, it allows access to the Web server. An Ethernet connector
socket is needed for this feature. If the application has an HMI developed by MicroHMI,
the MicroHMI application will be visualized (it needs 2 sockets); if the application does not
have HMI, it will be an access to the WWW directory of the SD card. It is also possible to
make Modbus communication through the HTTP protocol.
When this option is set to 0, it allows to save in code size. By default, the option is set to 0.
See section 3.7.5 for HTTP server setting.

 3.7.6 LCD
When this option is set to 1, it allows to manage the LCD screen of the PLC.
When this option is set to 0, it saves up to 50 KB of code. By default, the option is set to 1.

 3.7.7 RF
It enables the management of the LoRa Radio frequency module on a pre-assigned serial
port on each PLC. By default, the option is set to 0.

 3.8 Communicating without protocol
To set a communication without protocol, the SERx and SOCKx system words must be set
to COM_PROTOCOL_NONE (value 0).

 3.8.1 Setting

 3.8.1.1 ComSetCharTimeout (Parameter1, Parameter2)
This function allows you to set the inter-character timeout. This is useful with a radio

66

MicroLADDER V14
Software for PLC programming

communication where the characters can arrive with a little more delay.
Parameter1: Communication port number. It is preferable to use the predefined variables
COM_PORT_SER0, COM_PORT_SER1, COM_PORT_SER2, COM_PORT_SER3,
COM_PORT_SER4, COM_PORT_SER5, COM_PORT_SER6, COM_PORT_SER7,
COM_PORT_SOCK0, COM_PORT_SOCK1, COM_PORT_SOCK2, COM_PORT_SOCK3,
COM _ PORT_WSOCK0, COM_PORT_WSOCK1, COM_PORT_WSOCK2,
COM_PORT_WSOCK3.
Parameter2: The timeout value in Ms.

Example:
ComSetCharTimeout (COM_PORT_SER0, 100);

 3.8.2 Transfer

 3.8.2.1 ComPush (parameter1, parameter2, parameter3)
This function writes a character string into a temporary buffer. It is used before sending a
character string to the PLC.
Parameter1: communication port number. It is better to use predefined variables:
COM_PORT_SER0, COM_PORT_SER1, COM_PORT_SER2, COM_PORT_SER3,
COM_PORT_SER4, COM_PORT_SER5, COM_PORT_SER6, COM_PORT_SER7,
COM_PORT_SOCK0, COM_PORT_SOCK1, COM_PORT_SOCK2, COM_PORT_SOCK3,
COM_PORT_WSOCK0, COM_PORT_WSOCK1, COM_PORT_WSOCK2,
COM_PORT_WSOCK3.
Parameter2: character string of type unsigned char*.
Parameter3 : number of characters to be sent of unsigned short type

Example :
char s[] = "Test 123";
ComPush (COM_PORT_SER0, s, 8)

 3.8.2.2 ComPushByte (parameter1, parameter2)
This function writes a byte into a temporary buffer every time it is executed. This function
is an alternative to ComPush, and is used before sending a character string to the PLC.
Parameter1: communication port number. It is better to use the predefined variables
COM_PORT_SER0, COM_PORT_SER1, COM_PORT_SER2, COM_PORT_SER3,
COM_PORT_SER4, COM_PORT_SER5, COM_PORT_SER6, COM_PORT_SER7,
COM_PORT_SOCK0, COM_PORT_SOCK1, COM_PORT_SOCK2, COM_PORT_SOCK3,
COM_PORT_WSOCK0, COM_PORT_WSOCK1, COM_PORT_WSOCK2,
COM_PORT_WSOCK3.
Parameter2: characters of type unsigned char*.

Example
ComPushByte (COM_PORT_SER0, 'T');
ComPushByte (COM_PORT_SER0, 'e');
ComPushByte (COM_PORT_SER0, 's');
ComPushByte (COM_PORT_SER0, 't');

67

MicroLADDER V14
Software for PLC programming

ComPushByte (COM_PORT_SER0, ' ');
ComPushByte (COM_PORT_SER0, '1');
ComPushByte (COM_PORT_SER0, '2');
ComPushByte (COM_PORT_SER0, '3');

 3.8.2.3 ComSend (parameter1)
This function writes a character string previously written into a temporary buffer on the
serial port, Ethernet connector or Wi-Fi.
The function ComPush or ComPushByte must be executed before; for the previous
storage of the character string to be sent.
When transferring via Ethernet port or Wi-Fi, the function will not get back to the main
program until end of transfer. When transferring via serial port, the function gets back to
main program immediately and the transfer is performed in delayed mode during
interruption. Therefore the RES_SERx system word should be checked or the
ComFlushOutput function should be used to know the end of the transfer. The RES_SERx
word is updated at the end of the PLC cycle.
Hence the program should not be blocked when waiting a change in status.

Parameter1: communication port number. The use of the predefined variables
COM_PORT_SER0, COM_PORT_SER1, COM_PORT_SER2, COM_PORT_SER3,
COM_PORT_SER4, COM_PORT_SER5, COM_PORT_SER6, COM_PORT_SER7,
COM_PORT_SOCK0, COM_PORT_SOCK1, COM_PORT_SOCK2, COM_PORT_SOCK3,
COM_PORT_WSOCK0, COM_PORT_WSOCK1, COM_PORT_WSOCK2,
COM_PORT_WSOCK3 is preferable.

Example:
char s[] = "Test 123";
ComPush (COM_PORT_SER0, s, 8);
ComSend (COM_PORT_SER0);

Example: Use of ComPushByte and ComSend
ComPushByte (COM_PORT_SER0, 'T');
ComPushByte (COM_PORT_SER0, 'e');
ComPushByte (COM_PORT_SER0, 's');
ComPushByte (COM_PORT_SER0, 't');
ComPushByte (COM_PORT_SER0, ' ');
ComPushByte (COM_PORT_SER0, '1');
ComPushByte (COM_PORT_SER0, '2');
ComPushByte (COM_PORT_SER0, '3');
ComSend (COM_PORT_SER0);

 3.8.2.4 ComFlushOutput (parameter1)
This function waits until the end of transfer. It is hence a blocking function.
Parameter1: communication port number. The use of the predefined variables
COM_PORT_SER0, COM_PORT_SER1, COM_PORT_SER2, COM_PORT_SER3,
COM_PORT_SER4, COM_PORT_SER5, COM_PORT_SER6, COM_PORT_SER7,

68

MicroLADDER V14
Software for PLC programming

COM_PORT_SOCK0, COM_PORT_SOCK1, COM_PORT_SOCK2, COM_PORT_SOCK3,
COM_PORT_WSOCK0, COM_PORT_WSOCK1, COM_PORT_WSOCK2,
COM_PORT_WSOCK3 is preferable.

Example: Use of ComFlushOutput
ComFlushOutput (COM_PORT_SER1);

 3.8.3 Reception

 3.8.3.1 Return = ComGetFrameLength (parameter1)
This function indicates the number of characters that have been received. Reception is
done in a 256 characters cyclic buffer. When the buffer is full, the reception resets to the
beginning.
Return: return variable of type unsigned short. It indicates the number of characters
received in the buffer. Its initial value is 0. It is increased until 255, it is then set to 256 and
reset to 1. As a result, it directs to the next character position, except when indicating 256.
Parameter 1: communication port number. The use of predefined variables
COM_PORT_SER0, COM_PORT_SER1, COM_PORT_SER2, COM_PORT_SER3,
COM_PORT_SER4, COM_PORT_SER5, COM_PORT_SER6, COM_PORT_SER7,
COM_PORT_SOCK0, COM_PORT_SOCK1, COM_PORT_SOCK2, COM_PORT_SOCK3,
COM_PORT_WSOCK0, COM_PORT_WSOCK1, COM_PORT_WSOCK2,
COM_PORT_WSOCK3 is preferable.

Example: Use of ComGetFrameLength
Long = ComGetFrameLength (COM_PORT_SER1);

 3.8.3.2 Return = ComGetFrame (parameter1)
This function allows to retrieve any characters received. A pointer is sent to the beginning
of the string of reception. After processing the characters received, the ComFlushInput
must be used so that the next reception starts at the beginning of the buffer.
Return: return variable of type unsigned char*.
Parameter 1: communication port number. The use of predefined variables
COM_PORT_SER0, COM_PORT_SER1, COM_PORT_SER2, COM_PORT_SER3,
COM_PORT_SER4, COM_PORT_SER5, COM_PORT_SER6, COM_PORT_SER7,
COM_PORT_SOCK0, COM_PORT_SOCK1, COM_PORT_SOCK2, COM_PORT_SOCK3,
COM_PORT_WSOCK0, COM_PORT_WSOCK1, COM_PORT_WSOCK2,
COM_PORT_WSOCK3 is preferable.

Example: Use of ComGetFrame
char *String;
String = ComGetFrame(COM_PORT_SER1);
%MW20:=String[0];
%MW21:=String[1];
%MW22:=String[2];

69

MicroLADDER V14
Software for PLC programming

 3.8.3.3 ComFlushInput (parameter1)
This function resets the number of characters received to 0. Additionally, for the serial
ports, it deletes the string of reception.
Parameter 1: communication port number. The use of predefined variables
COM_PORT_SER0, COM_PORT_SER1, COM_PORT_SER2, COM_PORT_SER3,
COM_PORT_SER4, COM_PORT_SER5, COM_PORT_SER6, COM_PORT_SER7,
COM_PORT_SOCK0, COM_PORT_SOCK1, COM_PORT_SOCK2, COM_PORT_SOCK3,
COM_PORT_WSOCK0, COM_PORT_WSOCK1, COM_PORT_WSOCK2,
COM_PORT_WSOCK3 is preferable.

Example: Use of ComFlushInput
ComFlushInput(COM_PORT_SER1);

 3.8.4 Modbus
See %SW34 and %SW137 for further details. Both standard Modbus and extended
Modbus (Sirea Modbus) are available to all ports. That means that an application can be
loaded through all the ports. By default, all ports are set to Sirea Modbus slave number 1
for the serial ports and TCP. Modbus slave number 1 for the Ethernet ports and Wi-fi.

 3.8.4.1 Slave Modbus and slave Modbus TCP
NESC_SERx, NESC_SOCKx or NESC_WSOCKx should be defined just with its slave
number and either SERx, SOCKx or WSOCKx with the protocol
(COM_PROTOCOL_MODBUS variable in the case of standard Modbus and
COM_PROTOCOL_MODBUS_TCP variable in the case of TCP Modbus). All received
requests are answered by the system.

 3.8.4.2 Master Modbus
SERx, SOCKx or WSOCKx should just be defined without protocol
(COM_PROTOCOL_NONE variable).
NESC_SERx does not necessarily be set to 0.
Read and write frame management is subjected to the application initiative.
Note that it’s easier to use Iobus (automatic Modubs) instead of Modbus functions.

 3.8.4.3 Return = ModbusRead (parameter1 to parameter7)
This function allows to read words or bits of a Modbus slave. Speed and communication
format are set inside the system words. The function must be launched with an edge. It
takes a certain time slot for rolling out. The evolution status can be known by the
RES_SERx variable or the RES_SOCKx inside the system words.
Return: return variable of type unsigned char. It is 1 if the function is launched. It is 0 if
there is a parameter error that prevents the function from launching.

Parameter1: port number. The use of predefined variables (COM_PORT_SER0,
COM_PORT_SER1, COM_PORT_SER2, COM_PORT_SER3, COM_PORT_SER4,
COM_PORT_SER5, COM_PORT_SER6, COM_PORT_SER7, COM_PORT_SOCK0,
COM_PORT_SOCK1, COM_PORT_SOCK2, COM_PORT_SOCK3, COM_PORT_WSOCK0,
COM_PORT_WSOCK1, COM_PORT_WSOCK2, COM_PORT_WSOCK3) is preferable.

70

MicroLADDER V14
Software for PLC programming

Parameter2: Modbus type (0: classical Modbus, 1: TCP Modbus)
Parameter3: slave number.
Parameter4: type of variable to be read (bit or word, memory or input). The use of
predefined
variables (MODBUS_TYPE_MW, MODBUS_TYPE_M, MODBUS_TYPE_IW,
MODBUS_TYPE_I) is preferable.
Parameter5: address of the first piece of data in the memory of the master for the storage.
Parameter6: number of data to be read.
Parameter7: address of the first data in the slave.

 3.8.4.4 Return = ModbusWrite (parameter1 to parameter8)
This function allows to write words or bits into a Modbus slave. Speed and communication
format is set inside the system words. The function must be launched with an edge. It
takes a certain time slot for rolling out. The evolution status can be known by the
RES_SERx, RES_SOCKx or RES_WSOCKx inside the system words.
Return: return variable of type unsigned char. It is 1 if the function is launched. It is 0 if
there is a parameter error that prevents the function from launching.
Parameter1: port number. The use of predefined variables (COM_PORT_SER0,
COM_PORT_SER1, COM_PORT_SER2, COM_PORT_SER3, COM_PORT_SER4,
COM_PORT_SER5, COM_PORT_SER6, COM_PORT_SER7, COM_PORT_SOCK0,
COM_PORT_SOCK1, COM_PORT_SOCK2, COM_PORT_SOCK3, COM_PORT_WSOCK0,
COM_PORT_WSOCK1, COM_PORT_WSOCK2, COM_PORT_WSOCK3) is preferable.
Parameter2: Modbus type (0: classical Modbus, 1: TCP Modbus)
Parameter3: slave number.
Parameter4: type of variable to be written (bit or word). The use of predefined variables
(MODBUS_TYPE_MW, MODBUS_TYPE_M) is preferable.
Parameter5: address of the first piece of data in the memory of the master for the transfer.
Parameter6: number of data to be written.
Parameter7: address of the first data in the slave.
Parameter8: it must be set to 1 for forcing the use of the write function either of several
words (function code 10h instead of 06h) or several bits (function code 0Fh instead of 05h).
Otherwise set to 0 and the code function will be selected by the system depending on the
number of elements to be written.

 3.8.4.5 Master TCP Modbus
An opening and closing of the socket must be managed. The frame management is
identical to Modbus via serial port. The definition of the two first parameters ModbusRead
and ModbusWrite must be done with great care. Before each read and write process, the
status of the socket must be checked as it may have lost connection.

 3.8.4.6 ComConnect (parameter1, parameter2, parameter3)
This function opens the socket. The socket status must be then checked before generating
frames.
Parameter1: socket number. Set COM_PORT_SOCK0, COM_PORT_SOCK1,
COM_PORT_SOCK2, COM_PORT_SOCK3 for the Ethernet socket and set
COM_PORT_WSOCK0, COM_PORT_WSOCK1, COM_PORT_WSOCK2,
COM_PORT_WSOCK3 for the Wi-Fi socket. Cette valeur doit être en accord avec le

71

MicroLADDER V14
Software for PLC programming

premier paramètre des fonctions ModbusRead et ModbusWrite.
Parameter2: A string containing the IP address or address if the DNS is enabled.
Parameter3: The port number of the client or server to connect to. For example 502 for
Modbus.

 3.8.4.7 ComClose (parameter1)
This function closes the socket.
Parameter1: socket number. Put COM_PORT_SOCK0, COM_PORT_SOCK1,
COM_PORT_SOCK2, COM_PORT_SOCK3 for Ethernet sockets and put
COM_PORT_WSOCK0, COM_PORT_WSOCK1, COM_PORT_WSOCK2,
COM_PORT_WSOCK3 for Wi-Fi sockets. This value must be in accordance with the first
parameter of the ModbusRead and ModbusWrite functions.

 3.8.4.8 Return = ComGetSockState(parameter1)
This function reads the socket status.
Return: return variable of type unsigned char. It is SOCK_STATE_CLOSED (value 0) if the
socket is closed. It is SOCK_STATE_READY (value 1) if the socket is connecting (for a
function master or slave). It is SOCK_STATE_CONNECT (value 2) if the socket is open and
ready to operate. It is SOCK_STATE_CLOSE (value 3) if the socket is being closed.
Parameter1: socket number. Put COM_PORT_SOCK0, COM_PORT_SOCK1,
COM_PORT_SOCK2, COM_PORT_SOCK3 for Ethernet sockets and put
COM_PORT_WSOCK0, COM_PORT_WSOCK1, COM_PORT_WSOCK2,
COM_PORT_WSOCK3 for Wi-Fi sockets. This value must be in accordance with the first
parameter of the ModbusRead and ModbusWrite functions.
Note: The attempt to connexion of a socket may fail. It is thus necessary that time-out and
non-connection is managed by the application.

 3.9 Files management

The SD card or USB stick must be formatted in FAT32.
Operations on the files are blocking. They are time consuming, mainly when the FAT must
be browsed for finding free sectors. They cannot be processed during interrupt. Most of
the management functions of the files create “ResetWatchdogs” aiming at avoiding a
watchdog overrun.
The medium is divided into clusters. Each cluster is divided into 4 sectors of 512 bytes
each. To write data to a sector, the complete sector must be read, bytes are then modified
and the 512 bytes are written again.
The hot insertion of the SD card executes a cFatInit that lasts 1255ms. Other operations
take 30 to 100ms.

 3.9.1 Structure of file names
The type of storage medium (SD for a SD card or USB for a memory stick), followed by
":"the file name (8 characters maximum) and the extension (3 characters maximum) must
be indicated. The system does not make the difference between uppercase and
lowercase.

72

MicroLADDER V14
Software for PLC programming

Example: Structure of file names
char *achTmpFileName = "USB:LOG.TMP";
char *achTmpFileName = "SD:LOG.TMP";

 3.10 Structure "FSFile "
"FSFile " is a complex variable type (structure) that contains information while working on
a file (from its opening to closing). There is no particular action to be made to this variable,
these are the functions that will be called to work on the file that will impact this variable.
If there are several cycle laps between the opening and closing of the file, this variable
must be of the global type

 3.10.1 Return = FSOpen (parameter1, parameter2, parameter3)
This function allows to open the file before reading or writing.
Return: variable of type unsigned char. It is 1 when the action is correct. It is 0 if an error
occurs.
Parameter1: address of a variable of type FSFile.
Parameter2: string containing the file name
Parameter3: it indicates the opening of a file for reading (FA_READ), for data appending
(FA_APPEND) or for writing at the beginning of the file (FA_WRITE).

Example : Use of FSOpen
FSFile fd;
unsigned char result;
result = FSOpen (&fd, "SD:Sirea.TXT", FA_WRITE);

 3.10.2 FSClose (parameter1)
This function allows to close the file once the writing process has been completed. There
is no need of calling this function if the file has been opened only for reading.
Parameter1: address of a variable of type FSFile.

Example : Use of FSClose
FSFile fd;
FSClose (&fd);

 3.10.3 Return = FSSeek (parameter1, parameter2)
This function allows the positioning inside a file. FSOpen must be executed before.
Return: variable of type unsigned char. It is 1 when the action is correct. It is 0 when the
position requested is outside the file.
Parameter1: address of a variable of type FSFile.
Parameter2: byte to be reached.

Example : Use of FSSeek
FSFile fd;
unsigned char result;

73

MicroLADDER V14
Software for PLC programming

result = FSSeek (&fd, 10);

 3.10.4 Return = FSDelete (parameter1)
This function allows to delete a file.
Return: variable of type unsigned char. It is 1 when the action is correct. It is 0 if an error
occurs.
Parameter1: string containing the file name.

Example : Use of FSDelete
unsigned char result; char string [20];
unsigned char result;
result = FSRead (&fd, string, 10);

 3.10.5 Return = FSWrite (parameter1, parameter2, parameter3)
This function allows to write a limited number of characters. FSOpen must be executed
before and FSClose, afterwards.
Return: variable of type unsigned char. It is 1 when the action is correct. It is 0 if an error
occurs.
Parameter1: address of a variable of type FSFile.
Parameter2: string containing the characters to be written.
Parameter3: number of characters to be written.

Example : Use of FSWrite
FSFile fd;
char *string = "Good morning";
unsigned char result;
chResult = FSWrite (&fd, strChaine, 7);

 3.10.6 Return = FSRead (parameter1, parameter2, parameter3)
This function allows to read a row of data containing several columns. FSOpen must be
executed before.
Return: variable of type unsigned char. It contains the number of characters read.
Parameter1: address of a variable of type FSFile.
Parameter2: string that contains the number of characters read.
Parameter3: string containing the characters to be read.

Example :
FSFile fd;
char string[20];
unsigned char result;
unsigned short nbCol;
result = FSReadCSVRow (&fd, &nbCol, string, 20);

 3.10.7 Return = FSReadLine (parameter1, parameter2, parameter3,
parameter4)

74

MicroLADDER V14
Software for PLC programming

This function allows to read a row. FSOpen must be executed before.
Return: variable of type unsigned char. It is 1 when the action is correct. It is 0 if an error
occurs.
Parameter1: address of a variable of type FSFile.
Parameter2: string containing the characters to be read.
Parameter3: number of maximum characters to be read.
Parameter4: address of a variable of type unsigned char. The function will send 0 when the
returned row is complete and 1 when the returned row is incomplete.

Example : Use of FSReadLine
FSFile fd;
char strChaine[20];
unsigned char chRetour;
unsigned char chResult;
chResult = FSReadLine (&fd, strChaine, 20, &chRetour);

 3.10.8 Return = FSWriteCSVRow (parameter1, parameter2, parameter3)
This function allows to write a row of data containing several columns. FSOpen must be
executed before and FSClose afterwards.
Return: variable of type unsigned char. It is 1 when the action is correct. It is 0 if an error
occurs.
Parameter1: address of a variable of type FSFile.
Parameter2: number of columns to be written.
Parameter3: string containing the characters to be written. Different columns are
separated with 0.

Example : Use of FSWriteCSVRow
FSFile fd;
Char *strChaine = "Col1-Col2";
chaine[4] = 0;
unsigned char chResult;
chResult = FSWriteCSVRow (&fd, 2, strChaine);

 3.10.9 Return = FSReadCSVRow (parameter1 to parameter4)
This function allows to read a row of data containing several columns. FSOpen must be
executed before.
Return: variable of type unsigned char. It is 1 when the action is correct. It is 0 if an error
occurs.
Parameter1: address of a variable of type FSFile.
Parameter2: address of a variable of type unsigned short. The function will send to this
variable the number of columns found.
Parameter3: string containing the characters to be read. Different columns are separated
with 0.
Parameter4: number of maximum characters to be read.

75

MicroLADDER V14
Software for PLC programming

Example : Use of FSReadCSVRow
FSFile fd;
char strChaine[20];
unsigned short nbCol;
unsigned char chResult;
chResult = FSReadCSVRow (&fd, &nbCol, strChaine, 20);

 3.10.10 Return = FSMove (parameter1, parameter2)
This function allows to rename a file.
Return: variable of type unsigned char. It is 1 if the action is correct. It is 0 in case of an
error.
Parameter1: string containing the name of the source file.
Parameter2: string containing the name of the destination file.

Example:
unsigned char chResult;
ChResult = FSMove ("SD: LOG. TMP ", " SD: LOG2. TMP ");

 3.10.11 Return : FSCreateFolder (parameter1)
This function is used to create a directory.
Return: variable of type unsigned char. It is 1 if the action is correct. It is 0 in case of error
(Directory already existing, problem of writing on the support,...).
Parameter1: string containing the name of the directory and its path.

Example:
%M0: = FSCreateFolder ("test1 ");
%M1: = FSCreateFolder ("test1/test2 ");
%M2: = FSCreateFolder ("test1/test2/test3 ");

 3.10.12 Return: FSCopy (parameter1, parameter2)
This function is used to copy a file.
Return: variable of type unsigned char. It is 1 if the action is correct. It is 0 in case of an
error.
Parameter1: string containing the name of the source file.
Parameter2: character string containing the name of the destination file.

Example:
unsigned char chResult;
ChResult = FSCopy ("SD: LOG. TMP ", " SD: LOG2. TMP ");

 3.11 Log Management

 3.11.1 Time stamp format
It is a variable of type “long” containing the number of seconds elapsed since January 1st,
1970. Functions dateToTime and timeToDate are available for doing these calculations.

76

MicroLADDER V14
Software for PLC programming

Time stamp is in UTC time. The date is in local time. It is therefore influenced by the
summer/winter shift and time zone.

 3.11.2 "Date" structure
The following elements are contained in this structure :

Table 11. "Date" structure elements.
int sec Seconds after minute [0, 59]
int min Minutes after hour [0, 59]
int hour Hour starting in midnight [0, 23]
int mday Month day [1, 31]
int mon Month, starting in January [1, 12]
int year Year
int wday Day starting in Sunday [0, 6]
int yday Day starting on January 1st [0, 365]
int isdst Winter or summer time

 3.11.3 Return = dateToTime (parameter1)
This function converts a “Date” structure to time stamp. It works from 01/01/1970 00:00:00
(return value = 0) to 01/19/2038 03:14:07 (return value = 2147483647). Otherwise, the return
is -1.
Return: variable of type long
Parameter 1: variable of structure “Date”

Example : Use of dateToTime
long lTSDate;
Date d;
d.mday = 25;
d.mon = 12;
d.year = 2010;
lTSDate = dateToTime(d);

 3.11.4 Return = timeToDate (parameter1)
This function converts a time stamp to “Date” structure.

- Value 2147483647 sends 01/19/2038 03:14:07.
- Value 0 returns 01/01/1970 00:00:00.
- Value – 2147483648 sends 01/19/2038 03:14:08.
- Value -1 sends 02/07/2106 06:28:15.

Return: variable of structure “Date”
Parameter1: time stamp

Example : Use of timeToDate
long lTSDate;
Date d;
d = timeToDate(lTSDate);

77

MicroLADDER V14
Software for PLC programming

Heure = d.hour;

 3.11.5 LogValue Format
This structure allows the retrieval of logged data. The following elements are included:

Table 12. LogValue format elements.
unsigned long
time;

Time stamp of the data logging.

LogVariable *var; Pointer over the historical data

char *string; string of the event or alarm, This string is NULL if it is inexistent.

unsigned char
type;

When retrieving events, it is LOG_ENTRY_TYPE_EVENT (value 1) in the
case of a message, LOG_ENTRY_TYPE_ALARM_ON (value 2) in the
case of an error appearance and LOG_ENTRY_ALARM_OFF
(value 3) in the case of error disappearance.

double value; Value of the logged variable. For the retrieval of an event, the
value of this field is the value of the variable.

 3.11.6 Return = LogAlQuery (parameter1, parameter2, parameter3)
This function opens the database for retrieving the logged errors. LogFetch must be then
executed within the same cycle for the data retrieval.
Return: variable of type unsigned short. Number of alarms retrieved for the requested
period.
Parameter1: search starting date at time stamp format. Set to 0 for unlimited.
Parameter2: search ending date at time stamp format. Set to 0 for unlimited.
Parameter3: sort order. Use LOG_QUERY_ORDER_ASC for ascending data order (oldest
register in first place) or LOG_QUERY_ORDER_DESC for descending data order (oldest
register in last place).

Example : Use of LogAlQuery
long tsStart;
long tsEnd;
unsigned short nbrErr;
nbrErr = LogAlQuery (tsStart, tsEnd, LOG_QUERY_ORDER_DESC);

 3.11.7 Return = LogEvQuery (parameter1, parameter2, parameter3)
This function opens the database for retrieving the logged errors that appeared, that
disappeared and all the messages that appeared. LogFetch must be then executed within
the same cycle for the data retrieval. It is in the field «type » of the variable of type
LogValue that can make the difference.
Return: variable of type unsigned short. Number of events retrieved for the requested
period.
Parameter1: search starting date at time stamp format. Set to 0 for unlimited.
Parameter2: search ending date at time stamp format. Set to 0 for unlimited.

78

MicroLADDER V14
Software for PLC programming

Parameter3: sort order. Use LOG_QUERY_ORDER_ASC for ascending data order (oldest
register in first place) or LOG_QUERY_ORDER_DESC for descending data order (oldest
register in last place).

Example : Use of LogEvQuery
long lTSDebut;
long lTSFin;
unsigned short nNbrDef;
nNbrEv = LogEvQuery (lTSDebut, lTSFin, LOG_QUERY_ORDER_DESC);

 3.11.8 Return = LogTrQuery (parameter1 to parameter4)
This function opens the database for retrieving a value. LogFetch must be then executed
within the same cycle for the data retrieval.
Return: variable of type unsigned short. Number of values retrieved for the requested
period.
Parameter 1: variable of type unsigned short. Index of the variable to be retrieved.
Parameter 2: search starting date at time stamp format. Set to 0 for unlimited.
Parameter 3: search ending date at time stamp format. Set to 0 for unlimited.
Parameter 4: sort order. Use LOG_QUERY_ORDER_ASC for data order (oldest register in
first place) or LOG_QUERY_ORDER_DESC for descending data order (oldest register in
last place).

Example : Use of LogTrQuery
long lTSDebut;
long lTSFin;
unsigned short nNbrDef;
LogVariable *var = LogFindVariable("%MW20");
nNbrTr = LogEvQuery (var, lTSDebut, lTSFin, LOG_QUERY_ORDER_DESC);

 3.11.9 Return = LogFetch (parameter1)
This function retrieves a piece of data. This function must be called several times for
retrieving several data. LogAlQuery, LogEvQuery or LogTrQuery must be used just before
retrieving a data package.
Every data package must be retrieved in the same cycle.
Return: variable of type unsigned char. It is 0 when a problem occurs.
Parameter 1: structure of type LogValue. It will contain the data.

Example : Use of LogFetch
LogValue stDef;
LogFetch (&stDef);

 3.11.10 Return = LogAlSave (parameter1, parameter2, parameter3)
This function allows to save alarms to an SD card or a memory stick.
Return: variable of type unsigned char. It is 0 when a problem occurs.
Parameter1: string containing the filename.

79

MicroLADDER V14
Software for PLC programming

Parameter2: search starting date at time stamp format. Set to 0 for unlimited.
Parameter 3: search ending date at time stamp format. Set to 0 for unlimited.

Example: Use of LogAlSave
long lTSDebut;
long lTSFin;
unsigned short ret;
ret = LogAlSave ("SD:Alarme.csv", lTSDebut, lTSFin);

 3.11.11 Return = LogEvSave (parameter1, parameter2, parameter3)
This function allows to save events to an SD card or a memory stick.
Return: variable of type unsigned char. It is 0 when a problem occurs.
Parameter1: string containing the filename.
Parameter2: search starting date at time stamp format. Set to 0 for unlimited.
Parameter 3: search ending date at time stamp format. Set to 0 for unlimited.

Example : Use of LogEvSave
long lTSDebut;
long lTSFin;
unsigned short ret;
ret = LogEvSave ("SD:Evenem.csv", lTSDebut, lTSFin);

 3.11.12 Return = LogTrSave (parameter1 to parameter4)
This function allows to backup values to an SD card or a memory stick."LogFindVariable"
should be used before calling this function.
Return: variable of type unsigned char. It is 0 when a problem occurs.
Parameter1: string containing the filename.
Parameter2: number of the logged variable.
Parameter3: search starting date at time stamp format. Set to 0 for unlimited.
Parameter4: search ending date at time stamp format. Set to 0 for unlimited.

Example: Use of LogTrSave
long lTSDebut;
long lTSFin;
unsigned short ret;
LogVariable *var = LogFindVariable("%MW20");
if (var) {ret = LogTrSave ("SD:Valeur.csv", var, lTSDebut, lTSFin);}

 3.11.13 Return = LogSave (parameter1)
This function is used to export the result of a history query to an already opened file.
Return: variable of type unsigned char. It's worth 0 if there's a problem.
Parameter1: The address of a variable of type FSFile.

Example:
FSFile fd;

80

MicroLADDER V14
Software for PLC programming

char chRet
long lTSDebut;
long lTSFin;
unsigned short nNbrDef;
LogVariable *var = LogFindVariable("%MW20");
nNbrTr = LogTrQuery (var, lTSDebut, lTSFin, LOG_QUERY_ORDER_DESC);
if (FSOpen (&fd, "SD:Extract.csv", FA_WRITE))
{

chRet = LogSave (&fd);
FSClose (&fd);

}
 3.11.14 LogPurge ()

This function deletes all the events and curves of all variables.
Example : Use of LogPurge
LogPurge ();

 3.11.15 LogEvPurge ()
This function deletes all the events.
Example : Use of LogEvPurge
LogEvPurge ();

 3.11.16 Return = LogTrPurge (parameter1)
This function deletes the complete log of a variable. "LogFindVariable" should be used
before calling this function.
Return: variable of type unsigned char. It is1 when the variable exists, 0 otherwise.
Parameter1: number of the logged variable.

Example : Use of LogTrPurge
LogVariable *var = LogFindVariable("%MW20");
ret = LogTrPurge (var);

 4 IO Bus

The IO Bus relies on the Modbus protocol to communicate between a master and slaves.
The principle is to make the connection between the variables of the master and those of
the slave and the system automatically manages the communication frames to update
these variables. Everything takes place on the master side. The slave simply responds to
the frames as in the Modbus standard.

 4.1 Declaration of slave Equipment

81

MicroLADDER V14
Software for PLC programming

In «program/equipment’s/Add remote equipment ", fill in the information concerning
communication with the slave.
Index: Each equipment is marked with a unique number.
Label: Text that serves only as a helper and does not affect the operation.
Port: Choice between serial, Ethernet, Wi-Fi or Radio. For a serial port, you the port
number, the speed and the communication format must be specified. For an Ethernet or
Wi-Fi port, the IP address of the slave must specified. For a radio port, the frequency
channel must be specified.
Protocol: Choose between Modbus (this is the standard Modbus), Sirea (It is the extended
Modbus which can only be used with the Sirea device) or Modbus (inverted words) (words
that make up long integers and floats are inverted in relation to the Modbus Standard).
Slave number: This is the Modbus slave number.
Delay: This is the interframe delay of the communication in MS.
Timeout: This is the time between the start of waiting for a response and the passing in
error in order to continue the communication.
Maximum length of a frame: the maximum number of words in a frame.
Group variables: Allows when reading data to make longer frames but less numerous by
making the reading of uninteresting data.

 4.2 Declaration of variables
In the Declaration of variables, in the "Communication " tab, the field "remote address "
must be filled with the address of the slave followed by a point and the equipment
number.

Example: %MW16.1 (the master variable will be linked to the %MW16 variable of
equipment 1).
Also, in the "Communication " tab, it is possible to scale the value.

 4.3 State of communication with equipment
There is information on the state of communication with equipment. They are contained in
a "LogStats " structure. To be able to read this structure, you first have to get a pointer
over the equipment and then get a pointer over the statistical structure of the equipment.

82

MicroLADDER V14
Software for PLC programming

Sirea has made available a whole library of function block allowing to get simply the state
of communication.
The communication can be done by serial port if there is a GPRS modem, but this option
may disappear in the next version of the software. More generally, use ethernet port.

Example to obtain the statistical structure of equipment 1:
LogDevice *dev = LogGetDevice (1);
LogStats stats = LogGetStats (dev);

Structure "LogStats "content
unsigned long lastTimeOK Time stamp of the last frame OK

unsigned long lastTimeERR Error on the Time stamp of the last frame

unsigned char lastState State of the last frame (0 : no communication, 1 :
communication OK, more than 250 : Error)

unsigned long nbFramesOK Number of frame OK

unsigned long nbFramesERR Error on the number of frame

Example to mount a defect after 5 seconds without proper frame:
TDefComPV is a timed variable.
if (stats.lastState == 1 ||%S16) {TDefComPV := 5;}
if (TDefComPV == 0) {BDefComPV := 1;} else {BDefComPV := 0;}

 5 HTTP Protocol
For a PLC with an Ethernet port, it is possible to develop a Web server with MicroHMI.
Two sockets must be used. The first is set in COM_PROTOCOL_HTTP mode with its port
at 80 and the next is set to COM_PROTOCOL_HTTP_QUERY mode with its port at 81.
Using 2 sockets allows you to have a more fluid display and to properly load the images to
be displayed.

If the PLC has an Ethernet port, the system code HTTP option is enabled, and the
application does not have an HMI, the Web server will be able to retrieve the files in the
WWW directory of the SD card. Just indicate in a browser the IP address of the PLC and
the name of the file.

 6 Wi-Fi

 6.1 Mode
There is the Ad Hoc mode to make a Wi-Fi access point from a PLC and client mode.
This is the %SW95 (W_MODE) variable that is used to manage it.

Constant Value Description

WSOCK_MODE_OFF 0 No connection Wi-Fi

83

MicroLADDER V14
Software for PLC programming

WSOCK_MODE_STA 1 Client mode connection

WSOCK_MODE_AP 2 Ad Hoc mode connection

 6.2 WSockSetSSID (parameter 1)
This function allows you to initialize the name of the Wi-Fi station, both in client mode and
Ad Hoc mode.
This property can also be set with the "W_SSID " parameter of the file "main. CFG ". The
standard allows up to 32 characters.
Parameter1: A string containing the network SSID.

Example:
WSockSetSSID (TP-LINK _ 9B4144);

 6.3 WSockSetSecKey (parameter 1)
This function allows you to set the security key, both in client mode and Ad Hoc mode.
This property can also be set with the "W_SKEY " parameter of the file "main. CFG ".
Parameter1 : Character string containing the security key

Example :
WSockSetSecKey ("123456") ;

 6.4 WSockSetSecType (parameter 1)
This function is used to adjust the type of encryption. It is especially useful in Ad Hoc
mode because in client mode, it is enough not to call it to use automatic detection.
This property can also be set with the "W_STYPE " parameter of the file "main. CFG ".
Parameter1: A string containing the type of encryption. Possible values are "" (Empty
character string uses automatic detection), OPEN (no encryption), WEP, WPA, WPAAES,
WPA2AES, WPA2TKIP, WPA2.

Example:
WSockSetSecType ("");

 6.5 WSockSetKey (parameter 1, parameter 2)
This function allows to set the encryption type and the security key. This is the equivalent
of WSockSetSecKey and WSockSetSecType.
Parameter1: A string containing the type of encryption. Possible values are "" (Empty
character string uses automatic detection), OPEN (no encryption), WEP, WPA, WPAAES,
WPA2AES, WPA2TKIP, WPA2.
Parameter2: Character string containing the security key

Example:
WSockSetKey ("", "123456 ");

84

MicroLADDER V14
Software for PLC programming

 7 Connection to a server
It is very easy to set up a connection to a MicroSERVER in order to trace data. The data to
be remounted must be set up in the tabs "logging " and "remote server ". This
communication can be done through a serial port if there is a GPRS modem behind.

 7.1 Setting
The Setup window is accessible in MicroLADDER in "program/equipment/Basic
equipment".

The parameters are identical to the use of the function "LogSetRemoteDevice " described
below.
Memory size (in bytes): for PLC that do not have saved RAM, you must specify the size of
RAM allocated to memorizing the histories. For PLC with a saved RAM, the entire RAM is
used.
It is not necessary to specify the port of the server if it is the default port (13214) that is
used.

 7.2 Setting by programming
If there are connection parameters that can evolve, it is possible to call the
LogSetRemoteDevice function (Parameter1, Parameter2, Parameter3, Parameter4,
Parameter5, Parameter6, Parameter7, Parameter8, Parameter9, Parameter10,
Parameter11). This function is active on the front. It is called only once or if the
communication parameters changes.

Parameter1: A long integer indicating the index of the device that wants to connect to the
server.
Parameter2: A string containing the device type. This information is only used to make the
display on the server.
Parameter 3: A character string containing the label or location. This information is only

85

MicroLADDER V14
Software for PLC programming

used to make the display on the server.
Parameter 4: Identification of the communication port used for communication.
Parameter 5: Indication of the speed of communication. For a communication in Ethernet
or Wi-Fi, it is necessary to put COM_SPEED_NONE.
Parameter 6: Communication format. For a communication in Ethernet or Wi-Fi, it is
necessary to put COM_FORMAT_NONE.
Parameter 7: A string containing the server address.
Parameter 8: remote server port. By default, it's 13214.
Parameter 9: Identification of the radio frequency in case of using lora.
Parameter 10: An unsigned long integer containing the time out in seconds.
Parameter 11: A character string containing the password.

Example: LogSetRemoteDevice (850, "Gestionnaire", "Castres", COM_PORT_SOCK3,
COM_SPEED_NONE, COM_FORMAT_NONE, "194.117.213.206", 13214,
RF_FREQ_NONE, 60, "mdp") ;
LogSetRemoteDevice (850, "Gestionnaire", "Castres", COM_PORT_SER2,
COM_SPEED_9600, COM_FORMAT_8N1, "194.117.213.206", 13214, RF_FREQ_NONE, 60,
"mdp") ;

It is not necessary to set up the protocol of the Ethernet socket or Wi-Fi, the function does.
To know the status of the connection, you must test the variable "LogDataPortStep ". It is
greater than or equal to "LOG_DATA_PORT_STEP_WAIT_CMD " (value 6) and lower than
LOG_DATA_PORT_STEP_RESET (value 11) when everything is fine.
The connection settings are saved. It is not necessary to restart the function
"LogSetRemoteDevice " every time the application is restarted, but only after a load.

 8 History Management

On all PLC it is possible to manage histories. If there is no saved RAM, the data will be lost
in case of power outage.
It is possible to have events (memorization of all the dates of appearance and
disappearance of faults, memorization of all the dates of appearance of the messages),
alarms (recovery of the faults present and the date appearing) and the traces (with dates
and values of a data).
This information is stored in memory. It is then possible to read these data and save it on
the SD card or the USB stick. It is also possible to retrieve this information on an external
system using a specific protocol (see the paragraph concerning the connection to a
server).

Setting the history
The settings are in the "Logging " tab of the properties of a variable.

8.1 Alarm
Condition of the alarm:
None: No memorization

86

MicroLADDER V14
Software for PLC programming

<, ≤, >, ≥,! =, = =: type of comparison to cause the alarm to be memorized
Alarm threshold: value to compare to cause the alarm to be memorised
Alarm appearance wording: Text used when alarm appears
Alarm disappearing wording: text used when the alarm disappears

8.2 Event
Condition of the event:
None: No memorization
<, ≤, >, ≥,! =, = =: type of comparison to cause the event to be memorized
Event threshold: The value to compare to cause the event to be memorized
Event Labelling: Text used when the event appears

8.3 Curve
Type of logging:
None: No logging
Standard: The value is used as it is
Averaged: The value is averaged over the duration of logging
Period of logging (in second): See explanation below
Threshold of logging: see explanation below

For a curve data to be memorized, the elapsed time must be greater than or equal to the
set time and the delta of value is greater than or equal to the parameter threshold.
In the case of an unaveraged value, at the end of the period, if the delta of variation
exceeds the hysteresis, this value is recorded. In the case of an averaged value, a mean is
made during the period, at the end of the period, if the delta of variation exceeds the
hysteresis, there is a recording of this value.

8.4 Return = LogFindVariable (parameter1)
This function is used to point the LogVariable structure of a historical variable. It must be
used before doing an operation on a historical variable.
Return: pointer-type variable on a LogVariable structure.
Parameter1: A string containing the variable.

Example:
LogVariable * var = LogFindVariable (“%MW20 ");

8.5 Return = LogGetVariable (parameter 1)
This function does the same thing as the LogFindVariable function but from the index of
the historical variable. The indexes to use this function must be known, but the indexes are
assigned to compile and therefore unknown when writing the program.
Return: pointer-type variable on a LogVariable structure.
Parameter1: The index of the historical variable.

Example :
LogVariable * var = LogGetVariable (4);

87

MicroLADDER V14
Software for PLC programming

 9 Functions for character strings

 9.1 Return = StrToNum (parameter1)
This function converts a string of characters to a numeric value with comma. It only deals
with the first numeric characters. Writing « strToNum » also works,
Return: dual-type variable.
Parameter1: The character string to convert.

Example:
int nEntier = StrToNum ("-200 ");
float fFlottant = StrToNum ("3.14 ");

 9.2 Sprintf (parameter1, parameter2, parameter 3)
This function is similar to the standard C-language function "sprintf ". It is used to
populate strings with numeric values and/or string characters.
This function can be replaced by StrSet, which in addition makes character string length
controls.
Parameter1: A pointer to the string to fill.
Parameter2: The structure of the character string to create with the constant elements and
the type of the variable elements. Example of variable element types:% c (character),% I or
% d (integer),% s (string),% f (floating).
Parameter 3 and following: A list of the variable elements to be put in the character
string.

Example:
char * strUnit = "Bar";
Char strValeur [20];
int nMesure;
sprntf (strValeur, "measure =% i% s ", NMesure, StrUnit);

 9.3 Upper (parameter1)
This function replaces the lowercase characters in a character string with uppercase
characters.
This function is replaced by StrToUpper, but the old function can also be used.
Parameter1: pointer to character string

Example:
char * strTexte = "Hello ";
Upper (StrTexte);

 9.4 Lower (parameter1)
This function replaces the uppercase characters in a character string with lowercase
characters.
This function is replaced by StrToLower, but the old function can also be used.
Parameter1: pointer to character string

88

MicroLADDER V14
Software for PLC programming

Example:
char * strTexte = "Hello ";
Upper (StrTexte);

 9.5 StrSet (parameter1, parameter2, parameter3)
This function is identical to sprintf but it does character string size checks. So it's better to
use this function.

 9.6 StrToLower (parameter1)
This function is identical to lower.

 9.7 StrToUpper (parameter1)
This function is identical to upper.

 9.8 Return = StrGetChar (parameter1, parameter2)
This function is used to retrieve a character within a string.
Return: char variable containing the recovered character or 0 if the requested position is
outside the character string.
Parameter1: A pointer to the character string to examine.
Parameter2: A variable of type unsigned long indicating the place of the searched
character in the character string.

Example:
Char ChCar;
chCar = StrGetChar(%MS20, 10) ;

 9.9 Return = StrSetChar (parameter1, parameter2, parameter3)
This function allows you to change a character within a string. It is secure in relation to the
length of the character string.
Return: variable of type unsigned char. It's worth 1 if the action is correct. It's worth 0 if the
action couldn't be done.
Parameter1: A pointer to the character string to examine.
Parameter2: A variable of type unsigned long indicating the place of the character to be
changed in the string.
Parameter3: Character to modify

Example:
char ChCar = ' C ';
unsigned char chRep = StrSetChar (%MS20, 10, ChCar);

89

	Table of contents
	1 INTRODUCTION AND INSTALLATION 7
	1.1 System requirements 7
	1.2 Compiler and system code 7
	1.3 MicroLADDER 7
	1.4 MicroDRIVER 7
	1.5 MicroHMI 7

	2 PROGRAMMING IN MicroLADDER 7
	2.1 Getting started 7
	2.1.1 Start and quit MicroLADDER 8
	2.1.2 Using the HMI 8
	2.1.1 The programming languages 14
	2.1.2 Importing firmware 15
	2.1.3 Connecting with the PLC 15
	2.1.4 Using pages 17
	2.1.5 Creating a page 18
	2.1.6 Call of a page 18
	2.1.7 Variable editor 19
	2.1.1 Variable editor tool bar 19
	2.1.2 Variable properties 21
	2.1.3 Type of variables 24
	2.1.1 Using variables in a program 26
	2.1.1 Variable multi-edition 26

	2.2 Objects available in Ladder 27
	2.3 Creation of a program 29
	2.3.1 First program in ladder 29
	2.3.2 First program in C 31
	2.3.1 Combining Ladder and C (including an example) 31
	2.3.2 Compilation and loading to the PLC 33

	2.4 Creation of a function 33
	2.4.1 Defining variables 34
	2.4.2 Use of a function 34

	2.5 Using timer 35
	2.5.1 How to use a timer 36
	2.5.2 Examples of the use of timer 36

	2.6 Using a GUI (HMI) 37
	2.7 MicroHMI 37
	2.8 How to insert a GUI 37
	2.9 How to configure a GUI 37
	2.9.1 Example 38

	3 SOFTWARE ENVIRONMENT 39
	3.1 System architecture 39
	3.1.1 Monitor software 39
	3.1.2 "MAIN.CFG" file 40
	3.1.3 Loadmain file 41
	3.1.4 Loading an application 41

	3.2 Type of data 43
	3.2.1 DIGITAL inputs 43
	3.2.2 ANALOG inputs 43
	3.2.3 DIGITAL outputs 43
	3.2.4 ANALOG outputs 43
	3.2.5 PWM outputs 43
	3.2.6 Boolean 44
	3.2.7 Integer 44
	3.2.8 Long 44
	3.2.9 Float 44
	3.2.10 String 44
	3.2.11 System bits 45
	3.2.12 System words 47
	3.2.13 Modbus Detail 55
	3.2.14 Radio Frequency details 57
	3.2.15 Edge management 57

	3.3 Importing the variables by overwriting the present variables. 57
	3.3.1 General 57
	3.3.2 Programming 58
	3.3.3 Input / Output 59
	3.3.4 Communication 59
	3.3.5 Logging 59
	3.3.6 Remote server 60
	3.3.7 Display 60

	3.4 Application implementation 61
	3.4.1 Fonction 61
	3.4.2 Fonction implementation 61
	3.4.3 Using a function 62
	3.4.4 Use in Ladder 62
	3.4.5 Using library 62
	3.4.6 Calling a page 62
	3.4.7 Temporization 62
	3.4.8 Global variables 63
	3.4.9 Available RAM size 64

	3.5 Saved variables 64
	3.5.1 Saved RAM 64
	3.5.2 EEPROM or FRAM 65
	3.5.3 System words 65

	3.6 Watchdog 65
	3.6.1 Cycle Time Exceeded 65
	3.6.2 Watchdog soft 65

	3.7 System functions/Internal functions 65
	3.7.1 Configuration of the system code 65
	3.7.2 DHCP 66
	3.7.3 DNS 66
	3.7.4 GFX 66
	3.7.5 HTTP 66
	3.7.6 LCD 66
	3.7.7 RF 66

	3.8 Communicating without protocol 66
	3.8.1 Setting 66
	3.8.2 Transfer 67
	3.8.3 Reception 69
	3.8.4 Modbus 70

	3.9 Files management 72
	3.9.1 Structure of file names 72
	3.10 Structure "FSFile " 73
	3.10.1 Return = FSOpen (parameter1, parameter2, parameter3) 73
	3.10.2 FSClose (parameter1) 73
	3.10.3 Return = FSSeek (parameter1, parameter2) 73
	3.10.4 Return = FSDelete (parameter1) 74
	3.10.5 Return = FSWrite (parameter1, parameter2, parameter3) 74
	3.10.6 Return = FSRead (parameter1, parameter2, parameter3) 74
	3.10.7 Return = FSReadLine (parameter1, parameter2, parameter3, parameter4) 74
	3.10.8 Return = FSWriteCSVRow (parameter1, parameter2, parameter3) 75
	3.10.9 Return = FSReadCSVRow (parameter1 to parameter4) 75
	3.10.10 Return = FSMove (parameter1, parameter2) 76
	3.10.11 Return : FSCreateFolder (parameter1) 76
	3.10.12 Return: FSCopy (parameter1, parameter2) 76

	3.11 Log Management 76
	3.11.1 Time stamp format 76
	3.11.2 "Date" structure 77
	3.11.3 Return = dateToTime (parameter1) 77
	3.11.4 Return = timeToDate (parameter1) 77
	3.11.5 LogValue Format 78
	3.11.6 Return = LogAlQuery (parameter1, parameter2, parameter3) 78
	3.11.7 Return = LogEvQuery (parameter1, parameter2, parameter3) 78
	3.11.8 Return = LogTrQuery (parameter1 to parameter4) 79
	3.11.9 Return = LogFetch (parameter1) 79
	3.11.10 Return = LogAlSave (parameter1, parameter2, parameter3) 79
	3.11.11 Return = LogEvSave (parameter1, parameter2, parameter3) 80
	3.11.12 Return = LogTrSave (parameter1 to parameter4) 80
	3.11.13 Return = LogSave (parameter1) 80
	3.11.14 LogPurge () 81
	3.11.15 LogEvPurge () 81
	3.11.16 Return = LogTrPurge (parameter1) 81

	4 IO Bus 81
	4.1 Declaration of slave Equipment 81
	4.2 Declaration of variables 82
	4.3 State of communication with equipment 82

	5 HTTP Protocol 83
	6 Wi-Fi 83
	6.1 Mode 83
	6.2 WSockSetSSID (parameter 1) 84
	6.3 WSockSetSecKey (parameter 1) 84
	6.4 WSockSetSecType (parameter 1) 84
	6.5 WSockSetKey (parameter 1, parameter 2) 84

	7 Connection to a server 85
	7.1 Setting 85
	7.2 Setting by programming 85

	8 History Management 86
	8.1 Alarm 86
	8.2 Event 87
	8.3 Curve 87
	8.4 Return = LogFindVariable (parameter1) 87
	8.5 Return = LogGetVariable (parameter 1) 87

	9 Functions for character strings 88
	9.1 Return = StrToNum (parameter1) 88
	9.2 Sprintf (parameter1, parameter2, parameter 3) 88
	9.3 Upper (parameter1) 88
	9.4 Lower (parameter1) 88
	9.5 StrSet (parameter1, parameter2, parameter3) 89
	9.6 StrToLower (parameter1) 89
	9.7 StrToUpper (parameter1) 89
	9.8 Return = StrGetChar (parameter1, parameter2) 89
	9.9 Return = StrSetChar (parameter1, parameter2, parameter3) 89

	1 INTRODUCTION AND INSTALLATION
	1.1 System requirements
	1.2 Compiler and system code
	1.3 MicroLADDER
	1.4 MicroDRIVER
	1.5 MicroHMI

	2 PROGRAMMING IN MicroLADDER
	2.1 Getting started
	2.1.1 Start and quit MicroLADDER
	2.1.2 Using the HMI
	2.1.1 The programming languages
	2.1.2 Importing firmware
	2.1.3 Connecting with the PLC
	2.1.4 Using pages
	2.1.5 Creating a page
	2.1.6 Call of a page
	2.1.7 Variable editor
	2.1.1 Variable editor tool bar
	2.1.2 Variable properties
	2.1.3 Type of variables
	2.1.1 Using variables in a program
	2.1.1 Variable multi-edition

	2.2 Objects available in Ladder
	2.3 Creation of a program
	2.3.1 First program in ladder
	2.3.2 First program in C
	2.3.1 Combining Ladder and C (including an example)
	2.3.2 Compilation and loading to the PLC

	2.4 Creation of a function
	2.4.1 Defining variables
	2.4.2 Use of a function
	2.4.2.1 Ladder
	8.9.2.2 C code

	2.5 Using timer
	2.5.1 How to use a timer
	2.5.2 Examples of the use of timer

	2.6 Using a GUI (HMI)
	2.7 MicroHMI
	2.8 How to insert a GUI
	2.9 How to configure a GUI
	2.9.1 Example

	3 SOFTWARE ENVIRONMENT
	3.1 System architecture
	3.1.1 Monitor software
	3.1.1.1 LED showing operational stat of the PLC
	3.1.1.2 Monitor mode
	3.1.1.3 Transferring the program from the SD card to the PLC memory
	3.1.1.4 STOP mode
	3.1.1.5 RUN mode
	3.1.1.6 Incompatible versions between the monitor and the application

	3.1.2 "MAIN.CFG" file
	3.1.3 Loadmain file
	3.1.4 Loading an application
	3.1.4.1 MicroCONTROL
	3.1.4.2 SD Card

	3.2 Type of data
	3.2.1 DIGITAL inputs
	3.2.2 ANALOG inputs
	3.2.3 DIGITAL outputs
	3.2.4 ANALOG outputs
	3.2.5 PWM outputs
	3.2.6 Boolean
	3.2.7 Integer
	3.2.8 Long
	3.2.9 Float
	3.2.10 String
	3.2.11 System bits
	3.2.12 System words
	3.2.13 Modbus Detail
	3.2.14 Radio Frequency details
	3.2.15 Edge management

	3.3 Importing the variables by overwriting the present variables.
	3.3.1 General
	3.3.2 Programming
	3.3.3 Input / Output
	3.3.4 Communication
	3.3.5 Logging
	3.3.6 Remote server
	3.3.7 Display

	3.4 Application implementation
	3.4.1 Fonction
	3.4.2 Fonction implementation
	3.4.3 Using a function
	3.4.4 Use in Ladder
	3.4.5 Using library
	3.4.6 Calling a page
	3.4.7 Temporization
	3.4.8 Global variables
	3.4.9 Available RAM size

	3.5 Saved variables
	3.5.1 Saved RAM
	3.5.2 EEPROM or FRAM
	3.5.3 System words

	3.6 Watchdog
	3.6.1 Cycle Time Exceeded
	3.6.2 Watchdog soft

	3.7 System functions/Internal functions
	3.7.1 Configuration of the system code
	3.7.1.1 Optimize the code size
	3.7.1.2 AUTO_STOP

	3.7.2 DHCP
	3.7.3 DNS
	3.7.4 GFX
	3.7.5 HTTP
	3.7.6 LCD
	3.7.7 RF

	3.8 Communicating without protocol
	3.8.1 Setting
	3.8.1.1 ComSetCharTimeout (Parameter1, Parameter2)

	3.8.2 Transfer
	3.8.2.1 ComPush (parameter1, parameter2, parameter3)
	3.8.2.2 ComPushByte (parameter1, parameter2)
	3.8.2.3 ComSend (parameter1)
	3.8.2.4 ComFlushOutput (parameter1)

	3.8.3 Reception
	3.8.3.1 Return = ComGetFrameLength (parameter1)
	3.8.3.2 Return = ComGetFrame (parameter1)
	3.8.3.3 ComFlushInput (parameter1)

	3.8.4 Modbus
	3.8.4.1 Slave Modbus and slave Modbus TCP
	3.8.4.2 Master Modbus
	3.8.4.3 Return = ModbusRead (parameter1 to parameter7)
	3.8.4.4 Return = ModbusWrite (parameter1 to parameter8)
	3.8.4.5 Master TCP Modbus
	3.8.4.6 ComConnect (parameter1, parameter2, parameter3)
	3.8.4.7 ComClose (parameter1)
	3.8.4.8 Return = ComGetSockState(parameter1)

	3.9 Files management
	3.9.1 Structure of file names
	3.10 Structure "FSFile "
	3.10.1 Return = FSOpen (parameter1, parameter2, parameter3)
	3.10.2 FSClose (parameter1)
	3.10.3 Return = FSSeek (parameter1, parameter2)
	3.10.4 Return = FSDelete (parameter1)
	3.10.5 Return = FSWrite (parameter1, parameter2, parameter3)
	3.10.6 Return = FSRead (parameter1, parameter2, parameter3)
	3.10.7 Return = FSReadLine (parameter1, parameter2, parameter3, parameter4)
	3.10.8 Return = FSWriteCSVRow (parameter1, parameter2, parameter3)
	3.10.9 Return = FSReadCSVRow (parameter1 to parameter4)
	3.10.10 Return = FSMove (parameter1, parameter2)
	3.10.11 Return : FSCreateFolder (parameter1)
	3.10.12 Return: FSCopy (parameter1, parameter2)

	3.11 Log Management
	3.11.1 Time stamp format
	3.11.2 "Date" structure
	3.11.3 Return = dateToTime (parameter1)
	3.11.4 Return = timeToDate (parameter1)
	3.11.5 LogValue Format
	3.11.6 Return = LogAlQuery (parameter1, parameter2, parameter3)
	3.11.7 Return = LogEvQuery (parameter1, parameter2, parameter3)
	3.11.8 Return = LogTrQuery (parameter1 to parameter4)
	3.11.9 Return = LogFetch (parameter1)
	3.11.10 Return = LogAlSave (parameter1, parameter2, parameter3)
	3.11.11 Return = LogEvSave (parameter1, parameter2, parameter3)
	3.11.12 Return = LogTrSave (parameter1 to parameter4)
	3.11.13 Return = LogSave (parameter1)
	3.11.14 LogPurge ()
	3.11.15 LogEvPurge ()
	3.11.16 Return = LogTrPurge (parameter1)

	4 IO Bus
	4.1 Declaration of slave Equipment
	4.2 Declaration of variables
	4.3 State of communication with equipment

	5 HTTP Protocol
	6 Wi-Fi
	6.1 Mode
	6.2 WSockSetSSID (parameter 1)
	6.3 WSockSetSecKey (parameter 1)
	6.4 WSockSetSecType (parameter 1)
	6.5 WSockSetKey (parameter 1, parameter 2)

	7 Connection to a server
	7.1 Setting
	7.2 Setting by programming

	8 History Management
	8.1 Alarm
	8.2 Event
	8.3 Curve
	8.4 Return = LogFindVariable (parameter1)
	8.5 Return = LogGetVariable (parameter 1)

	9 Functions for character strings
	9.1 Return = StrToNum (parameter1)
	9.2 Sprintf (parameter1, parameter2, parameter 3)
	9.3 Upper (parameter1)
	9.4 Lower (parameter1)
	9.5 StrSet (parameter1, parameter2, parameter3)
	9.6 StrToLower (parameter1)
	9.7 StrToUpper (parameter1)
	9.8 Return = StrGetChar (parameter1, parameter2)
	9.9 Return = StrSetChar (parameter1, parameter2, parameter3)

